
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON ROBOTICS 1

A Quantum-Statistical Approach Toward Robot
Learning by Demonstration

Sotirios P. Chatzis, Dimitrios Korkinof, and Yiannis Demiris, Senior Member, IEEE

Abstract—Statistical machine learning approaches have been at
the epicenter of the ongoing research work in the field of robot
learning by demonstration over the past few years. One of the
most successful methodologies used for this purpose is a Gaussian
mixture regression (GMR). In this paper, we propose an extension
of GMR-based learning by demonstration models to incorporate
concepts from the field of quantum mechanics. Indeed, conven-
tional GMR models are formulated under the notion that all the
observed data points can be assigned to a distinct number of model
states (mixture components). In this paper, we reformulate GMR
models, introducing some quantum states constructed by super-
posing conventional GMR states by means of linear combinations.
The so-obtained quantum statistics-inspired mixture regression al-
gorithm is subsequently applied to obtain a novel robot learning
by demonstration methodology, offering a significantly increased
quality of regenerated trajectories for computational costs compa-
rable with currently state-of-the-art trajectory-based robot learn-
ing by demonstration approaches. We experimentally demonstrate
the efficacy of the proposed approach.

Index Terms—Quantum statistics, robot learning by demonstra-
tion, statistical machine learning.

I. INTRODUCTION

ROBOT learning by demonstration has been an active re-
search topic in the field of robotics during the past few

years, encompassing methods by which a robot can learn new
skills by simple observation of a human teacher; in the same
way, humans learn new skills by imitation [1]–[3]. As a re-
sult, learning by demonstration alleviates the need of program-
ming a robot how to perform a task, which can be rather te-
dious and expensive, and can speed up reinforcement learning
techniques, since it significantly reduces the search space of
the learning algorithm, while, by making robots more user-
friendly, it increases the appeal of applying robots to real-life
environments.

To effect these goals, robot learning by demonstration com-
bines methods from diverse research areas, such as machine
learning, computer vision, and human–robot interaction. Cur-
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rent approaches toward learning by demonstration can be di-
vided into two broad categories: low-level trajectory encoding
and high-level decomposition of a skill into action units, which is
usually referred to assymbolic encoding. In this paper, we focus
on the former approach toward learning by demonstration. The
first step toward the implementation of a successful trajectory-
based learning by demonstration algorithm is to choose the right
variables to encode the movements under consideration; usually,
representations in the joint space, task space, or torque space
are considered [4]. Subsequently, coming up with methods ca-
pable of successfully extracting and modeling the underlying
patterns in the demonstrated motions comes to the fore, being
the crucial factor that eventually determines the effectiveness of
a developed learning by demonstration algorithm.

Several researchers have considered the application of sta-
tistical machine learning algorithms as the effective means to
facilitate extraction of the trajectory patterns underlying a set of
demonstrated skills. Indeed, one of the most popular trends of
work in the field of trajectory-based robot learning by demon-
stration consists in the investigation of the utility of a Gaussian
mixture regression (GMR) [5]. GMR has been shown to be very
successful in encoding demonstrations, extracting their under-
lying constraints, and reproducing smooth generalized motor
trajectories through a Gaussian mixture model (GMM) trained
by means of the expectation–maximization (EM) algorithm [6],
while imposing considerably low-computational costs [7]–[10].
GMR-based approaches toward learning by demonstration rely
on the postulation of a GMM to encode the covariance relations
between different variables (either in the task space, or in the
robot joints space). If the correlations vary significantly between
regions, then each local region of the state space visited during
the demonstrations will need a few Gaussians to encode these
local dynamics.

One interesting and worthwhile to mention variant of GMR
is a locally weighted projection regression (LWPR) [11]. This
variant of GMR is specially tailored to the needs of robot learn-
ing by demonstration applications with high-dimensional in-
put signals possibly including redundant and irrelevant input
dimensions. LWPR, as well asreward-weighted LWPR vari-
ants [12], has been shown to yield similar or inferior perfor-
mance compared with GMR under several experimental setups
entailing low-dimensionality input signals (see, e.g., [13]), but
seem to perform considerably better in applications where high-
dimensional input signals are being modeled.

Recently, several researchers have considered the applica-
tion of concepts from quantum mechanics in the field of ma-
chine learning [14]. The main notion behind these studies con-
sists of the generalization of the probability distribution of the
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postulated models by introducing a density matrix, which is a
self-adjoint positive-semidefinite matrix of trace one. Indeed, it
has been shown (see, e.g., [15]) that the basic probability rule
of quantum mechanics, widely known as the Born Rule, which
gives rise to the concept of generalized probability by intro-
duction of a density matrix, is closely related to spectral clus-
tering and other machine learning algorithms based on spectral
theory.

In [16], a combination of the margin maximization scheme
with a probabilistic modeling approach is presented, facilitated
by incorporating the concepts of quantum detection and estima-
tion theory [17]. In [18], a quantum Markov random field was
proposed, based on the utilization of quantum statistics tech-
niques, such as the concept of the density matrix; the method
was successfully applied to image restoration. More recently,
a quantum-statistical-mechanical extension of the GMM was
presented in [19]; the proposed method was based on the repre-
sentation of the model marginal likelihood as a function of a den-
sity matrix, and was shown to outperform conventional GMMs
in an image segmentation task. Finally, a novel regard toward
variational Bayesian (VB) inference [20] was proposed in [21],
and was shown to outperform conventional VB inference algo-
rithms when applied to a latent Dirichlet allocation [22], one of
the most popular probabilistic graphical models for topic-based
document retrieval.

Motivated by these results, in this paper, we introduce a novel
method for GMR, inspired by concepts from the field of quan-
tum statistics. Indeed, conventional GMR models are formu-
lated under the notion that all the observed data points can be
assigned to a distinct number of model states (mixture compo-
nents). In this paper, we reformulate GMR models, introducing
some quantum states constructed by superposing conventional
GMR states by means of linear combinations. To affect this goal,
we reformulate the expression of the likelihood of conventional
GMR models into a special form (diagonal) density matrix, and
we further show that this matrix can be generalized into a more
generic, nondiagonal form. Based on this novel formulation,
a quantum-mechanical-inspired expression of the conditional
predictive distribution of the GMR model is eventually derived,
and applied to yield a quantum-statistical approach toward robot
learning by demonstration. We illustrate the efficacy of the pro-
posed approach by considering a number of demanding robot
learning by demonstration scenarios, and we compare its per-
formance with state-of-the-art trajectory-based robot learning
by demonstration methodologies.

The remainder of this paper is organized as follows. In
Section II, GMR as applied to robot learning by demonstration
is introduced in a concise manner. In Section III, we provide
a brief review of concepts from the field of quantum informa-
tion processing, with a special focus on density matrices, which
provide a quantum-inspired extension of conventional probabil-
ity, and the related calculus. In Section IV, we derive the pro-
posed quantum Gaussian mixture regression (QGMR) model,
and we elaborate on its application to robot learning by demon-
stration. In Section V, the experimental evaluation of the pro-
posed algorithm is performed. The final section concludes this
paper.

II. GAUSSIAN MIXTURE REGRESSION FOR ROBOT

LEARNING BY DEMONSTRATION

In this section, we provide a brief overview of GMR as applied
in the context of robot learning by demonstration.

Let us define a trajectory as a set of position data (in joint
space or task space) sequentially appearing over time. GMR
can be used to retrieve smooth generalized trajectories with as-
sociated predictive variances expressing the variations of the
trajectory variables. Indeed, following the standard setting of
all regression algorithms, GMR consists in modeling the condi-
tional expectation of a set of response variables β̇ ∈ R

p2 given
a set of predictor variables β ∈ R

p1 , by exploiting the infor-
mation available in a set of training observations {βj , β̇j}N

j=1 .
In the case of trajectory-based robot learning by demonstration,
the predictor variable β might represent the current position of
the moving end-effector, with the response variable β̇ being the
velocity that must be adopted by the end-effector for the next
time step, in order to comply with the learnt trajectory.

To effect these goals, contrary to most of the traditional re-
gression methodologies, GMR does not approximate the regres-
sion function in a direct fashion. In contrast, GMR postulates a
GMM to model the joint probability distribution of the consid-
ered response and predictor variables (β̇ and β), i.e., it considers
a model of the form

p(β, β̇|π, {μi ,Σi}K
i=1) =

K∑

i=1

πiN (β, β̇|μi ,Σi) (1)

where π = (πi)K
i=1 are the prior weights of the mixture com-

ponent densities, and N (·|μi ,Σi) is a Gaussian with mean
μi and covariance matrix Σi . The postulated GMM (1) is
trained by means of the EM algorithm [23], using a set of
training data corresponding to a number of trajectories ob-
tained by human demonstrators. Then, using the obtained GMM
p(β, β̇|π, {μi ,Σi}K

i=1), GMR retrieves a generalized trajec-
tory by estimating at each time step the conditional expectation
E[β̇|β;π, {μi ,Σi}K

i=1].
Let us express the means μi of the component densities of

the postulated GMM (1) in the form

μi =

[
μβ

i

μβ̇
i

]
(2)

where μβ
i is the mean of the variable β, and μβ̇

i is the mean of
the variable β̇. Let us also introduce the notation

Σi =

[
Σβ

i Σββ̇
i

Σβ̇β
i Σβ̇

i

]
(3)

for the covariance matrices of the model component densities.
Then, it is easy to show that, based on (1) and the assumptions
(2) and (3), the conditional probability p(β̇|β;π, {μi ,Σi}K

i=1)
of the response variables β̇, given the predictor variables β and
the postulated GMM, yields [24]

p(β̇|β;π, {μi ,Σi}K
i=1) = N (β̇|μ̂, Σ̂) (4)
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where

μ̂ =
K∑

i=1

φi(β)[μβ̇
i + Σβ̇β

i (Σβ
i )−1(β − μβ

i )] (5)

Σ̂ =
K∑

i=1

φ2
i (β)[Σβ̇

i − Σβ̇β
i (Σβ

i )−1Σββ̇
i ] (6)

and

φi(β) =
πiN (β|μβ

i ,Σβ
i )

∑K
k=1 πkN (β|μβ

k ,Σβ
k ).

(7)

Based on (4), predictions under the GMR approach
can be obtained by taking the conditional expectations
E(β̇|β;π, {μi ,Σi}K

i=1), i.e.,

̂̇
β

�
= E(β̇|β;π, {μi ,Σi}K

i=1) = μ̂. (8)

As we observe, a significant merit of GMR consists in the fact
that it provides a full predictive distribution; thus, a predictive
variance

V(β̇|β;π, {μi ,Σi}K
i=1) = Σ̂

is available at any position of the end-effector. Therefore, GMR
offers a model-estimated measure of predictive uncertainty not
only at specific positions, but continuously along the generated
trajectories.

One of the most significant advantages of GMR-based robot
learning by demonstration can be traced to the prediction gen-
eration procedure: Contrary to most discriminative regression
algorithms (e.g., support vector machines [25] and Gaussian
processes [26]), the computational time required for trajectory
reproduction using (5) does not increase with the number of
demonstrations provided to the robot, which is a particularly
important property for lifelong learning robots. Indeed, the
available model training data provided by the employed human
demonstrators are processed in only an off-line fashion, to ob-
tain the estimates of the model parameters by means of the EM
algorithm. This way, prediction generation under GMR reduces
to the estimation of a simple weighted sum of linear models; as
a result, the regression phase is processed very quickly, which
is advantageous because the reproduction of smooth trajectories
is fast enough to be used at any appropriate time by the robot.

Finally, apart from the GMM model estimation, another sig-
nificant issue that always has to be addressed is data-driven
selection of the appropriate number of GMM component den-
sities. The number of component densities in the postulated
GMMs is significant for the performance of GMR-based tra-
jectory learning, as it determines the compromise for GMR be-
tween having an accurate estimation of the response and having
a smooth response (bias-variance tradeoff). Optimal model size
(order) selection for finite mixture models is an important but
very difficult problem which has not been completely resolved.
Indeed, a number of approaches have been proposed for this
purpose, including likelihood ratio test statistics, information
criteria, Bayesian-based information criteria, and classification-
based information criteria [23]. In this paper, we consider appli-
cation of the main and oldest Bayesian-based model selection

criterion, namely the Bayesian information criterion (BIC) of
Schwarz [27]. The BIC model selection criterion as applied to
a GMR-fitted GMM used for trajectory-based robot learning by
demonstration consists of the determination of the number of
model component densities which minimizes the metric

L �
= − 2

N∑

n=1

log p({βn , ˙βn}N
n=1 |π, {μi ,Σi}K

i=1) + d logN

(9)
where d is the total number of model parameters, hence a func-
tion of the number of mixture component densities K, and
N is the number of available model training data points. BIC
has been shown not to underestimate the required number of
mixture components, asymptotically, and to provide consistent
model order estimators under certain conditions [28].

III. QUANTUM STATISTICS AND THE DENSITY MATRIX

Probability is the main concept in the field of classical statis-
tics. This is also the main point where quantum statistics depart
from classical statistics: in quantum statistics, probabilities are
replaced by density matrices. A density matrix is a self-adjoint
positive-semidefinite matrix and its trace is one. Indeed, it is
easy to show that the conventional probabilities used in classical
statistics can be expressed as density matrices of a special form
(diagonal). For example, let us consider a classical system com-
prising q states. Let us also introduce the notation � = (�i)

q
i=1 ,

with the �i being the (prior) probability of occurrence of the ith
system state. We also denote as {ei}q

i=1 a set of basis vectors,
such that ei = (eik )q

k=1 with

eik =
{

1, if i = k

0, if i �= k

Based on these assumptions, the density matrix for this postu-
lated classical system can be defined as

Φ
�
=

⎡

⎢⎢⎣

�1 0 . . . 0
0 �2 . . . 0
...

...
. . .

...
0 0 . . . �q

⎤

⎥⎥⎦ =
q∑

i=1

�ieie
T
i . (10)

In quantum statistics, the concept of probability is extended
by introducing nondiagonal elements in the density matrix Φ
of the treated system. The states of a system in quantum statis-
tics are defined by the unit vectors u; the matrix uuT corre-
sponding to a state vector u is called dyad and has trace one,
i.e., tr(uuT ) = uT u = 1. On this basis, the density matrix Φ
generalizes the concept of probability distribution and can be
defined as a mixture of dyads in the sense

Φ =
q∑

i=1

�iuiu
T
i (11)

where �i is the (prior) probability of the system state repre-
sented by the dyad of ui . Under this construction, the probabil-
ity assigned to the unit vector u and its associated dyad uuT

yields

p(u) = tr(ΦuuT ) = uT Φu. (12)
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Equation (12) is widely known within the quantum mechanics
community as the Born rule. Note that the unit vectors and their
associated dyads in quantum systems have a straightforward
natural interpretation. Consider, for example, a quantum system
with four “pure” states; then, a state vector of the form u =
(1

2 , 0,
√

3
2 , 0) represents the mixture of the first “pure” state and

the third “pure” state of the system, with probabilities
( 1

2

)2 = 1
4 ,

and
(√

3
2

)2 = 3
4 , respectively.

IV. QUANTUM GAUSSIAN MIXTURE REGRESSION

A. Using Quantum Gaussian Mixture Models
to Obtain a Regression Algorithm

Let us reconsider the case of GMR and the associated GMM
postulated to represent the joint distribution of the modeled pre-
dictor and response variables. Let us consider a K-component
postulated GMM, as in (1). We introduce the following matrices:

Ψ
�
= −

⎡

⎢⎢⎢⎣

logπ1 0 . . . 0
0 logπ2 . . . 0
...

...
. . .

...
0 0 . . . logπK

⎤

⎥⎥⎥⎦ (13)

and

Ω(β, β̇)
�
=

⎡

⎢⎢⎢⎢⎣

p(β, β̇|θ1) 0 . . . 0
0 p(β, β̇|θ2) . . . 0
...

...
. . .

...

0 0 . . . p(β, β̇|θK )

⎤

⎥⎥⎥⎥⎦

(14)

where θi
�
= {μi ,Σi}, and p(β, β̇|θi) is the conditional joint

probability of the predictor and response variables given that
they are emitted from the ith component density of the postu-
lated GMM, i.e.,

p(β, β̇|θi) = N (β, β̇|μi ,Σi). (15)

Under this scheme, the likelihood p(β, β̇|π, {μi ,Σi}K
i=1) of the

postulated model, given by (1), can be equivalently expressed
in the form [19]

p(β, β̇|π, {μi ,Σi}K
i=1) =

tr[exp(−H(β, β̇))]∫
ω tr[exp(−H(ω))]dω

(16)

where

H(β, β̇) = Ψ − logΩ(β, β̇). (17)

The exponential exp(A) of a matrix A is defined as

exp(A)
�
=

∞∑

ρ=0

1
ρ!

Aρ (18)

and the logarithm log(A) is given by

log(A)
�
= −

∞∑

ρ=1

1
ρ
(I − A)ρ . (19)

On the basis of the aforementioned construction, we have
managed to express the likelihood (1) of the postulated GMM
employed by the GMR model as a function of the density ma-
trix of a quantum system with a special form (having a diagonal
density matrix). Then, based on the relevant discussions of Sec-
tion III, one may generalize the results of (16) to the case of a
general (symmetric) density matrix so as to obtain a quantum-
statistical approach toward GMR-based trajectory learning by
demonstration. Specifically, let us extend the diagonal matrix Ψ
to a symmetric K × K matrix as follows:

Ψ
�
= −

⎡

⎢⎢⎢⎣

logπ1 γ . . . γ

γ logπ2 . . . γ
...

...
. . .

...

γ γ . . . logπK

⎤

⎥⎥⎥⎦ (20)

where γ is a hyperparameter related to the prior probability
of a “mixed” model state (comprising whichever two “pure”
model states).Then, based on (17), the symmetric K × K matrix
H(β, β̇) of the model yields

H(β, β̇) = −
K∑

k=1

K∑

k ′=1

ξkk ′Δkk ′

= −

⎡

⎢⎢⎢⎢⎣

log{π1p(β, β̇|θ1)} . . . γ

γ . . . γ
...

. . .
...

γ . . . log{πK p(β, β̇|θK )}

⎤

⎥⎥⎥⎥⎦

(21)

where the coefficients ξkk ′ are defined as

ξkk ′
�
=

{
log{πkp(β, β̇|θk )}, if k = k′

γ, if k �= k′

and the Δkk ′ are K × K matrices, the (l, l′)th elements of which
are defined as

(Δkk ′)ll ′
�
= δ(k − l)δ(k′ − l′) (22)

where δ(·) is the Kronecker’s delta function.
A GMM with likelihood expression of the form (16), where

the density matrices H(β, β̇) are given by the generalized ex-
pression (21), is usually referred to as a quantum Gaussian
mixture model (QGMM) [19]. An issue of this formulation of
QGMMs is that the integral in the denominator (regulariza-
tion constant) of their likelihood (16) is difficult to compute
analytically. To alleviate these issues, typically, the following
approximation is adopted [19]:

p(β, β̇|π, {μi ,Σi}K
i=1) =

tr[exp(−H(β, β̇))]
tr[exp(−Ψ)]

. (23)

Apparently, a GMR model the employed GMM of which is of
QGMM type departs from the classical definition of the GMR
model, providing a quantum-statistical approach toward GMR.
The entailed density matrices of the so-derived model include
some quantum effects and are based on states constructed by
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superposing the model states corresponding to the mixture com-
ponents of a classical GMR model.

B. Proposed Algorithm

Definition 1: We define the QGMR model as a GMR model
that employs a GMM with likelihood of the form (23), with the
density matrices H(β, β̇) given by the generalized expression
(21).

To develop a trajectory-based robot learning by demonstra-
tion algorithm based on the QGMR framework, we have to 1)
provide an algorithm for model training using a set of human-
generated demonstrations and 2) derive the expression of the
conditional density of the response variables given the estimated
joint distribution model.

1) Model Training: Let us consider a model fitting dataset

comprising N samples {yj}N
j=1

�
= {[βj ; β̇j ]}N

j=1 . Then, likeli-
hood maximization for the postulated model (23) can be shown
to yield the following estimators for the model parameters [19]

πi ≈
∑N

j=1 ψij

N
(24)

μi =

∑N
j=1 ψijyj∑N

j=1 ψij

(25)

and

Σi =

∑N
j=1 ψij (yj − μi)(yj − μi)T

∑N
j=1 ψij

(26)

where

ψij
�
=

tr[Δiiexp(−H(βj , β̇j ))]

tr[exp(−H(βj , β̇j ))]
(27)

and the matrices Δii are given by (22).
2) Predictive Density: Having obtained the estimators of the

QGMR model parameters, we can now proceed to the derivation
of the model predictive density, that is the conditional density
p(β̇|β;π, {μi ,Σi}K

i=1). For this purpose, we rely on the adop-
tion of the classical expression

p(β̇|β;π, {μi ,Σi}K
i=1) = N (β̇|μ̂, Σ̂) (28)

for the predictive density of our model, where the predictive
mean is given by

μ̂ =
K∑

i=1

φi(β)[μβ̇
i + Σβ̇β

i (Σβ
i )−1(β − μβ

i )] (29)

and the predictive covariance reads

Σ̂ =
K∑

i=1

φ2
i (β)[Σβ̇

i − Σβ̇β
i (Σβ

i )−1Σββ̇
i ] (30)

with the μβ
i , μβ̇

i , Σβ
i , Σββ̇

i , Σβ̇β
i , and Σβ̇

i defined as in (2)
and (3), and the estimates of μi and Σi given by (25) and (26),
respectively.

To determine the model state weight values φi(β) in (29) and
(30) for the QGMR model, we first consider the quantum GMM

of the predictor variables

p(β|π, {μβ
i ,Σβ

i }K
i=1) =

tr [exp(−H(β))]
tr [exp(−Ψ)]

(31)

where

H(β) =

−

⎡

⎢⎢⎢⎢⎢⎣

log
{

π1p(β|μβ
1 ,Σβ

1 )
}

. . . γ

γ . . . γ

...
...

γ . . . log{πK p(β|μβ
K ,Σβ

K )}

⎤

⎥⎥⎥⎥⎥⎦
(32)

and Ψ is defined in (20). Based on this model, selection of the
values of φi(β) is conducted by setting them equal to the respon-
sibilitiesof the quantum GMM (31) of the predictor variables,
i.e.,

φi(β) =
tr [Δiiexp(−H(β))]

tr [exp(−H(β))]
. (33)

V. EXPERIMENTAL EVALUATION

In this section, we provide a thorough experimental evaluation
of the QGMR algorithm, in a series of applications dealing with
robot learning by demonstration, and compare its performance
with state-of-the-art methods in the field. Our source codes have
been developed in MATLAB R2010b, and were run on a Mac-
intosh platform with an Intel Core i7 2.67 GHz CPU, and 4 GB
RAM, running Mac OS X 10.6. The model-estimated values
generated in MATLAB were sent in real time to the NAO robot
by means of a MATLAB–NAO communication protocol writ-
ten in Python. Therefore, the results reported here are obtained
from the actual robot and not by means of simulation.

In our experiments, we employ a humanoid robotic platform,
namely the NAO robot (academic edition), a humanoid robot
with 27 degrees of freedom [29]. The predictor variable β used
by the considered models is the position vector of the robot
joints, whereas the response variable β̇ is the velocity vector of
the robot joints, that is, the velocity that should be imposed on
the robot joints so as to remain on the learnt trajectory.

Our approach is compared against two popular state-of-
the-art methods for robot learning by demonstration, namely
GMR [10], and the local Gaussian process regression (LGPR)
method of [30]. The latter method clusters the input space into
smaller subsets, and fits a dedicated Gaussian process regression
model for each one of these subspaces. As such, it shares sim-
ilarities with the GMR and QGMR methods, which also divide
the input space into subspaces and postulate different regres-
sion models on each one of these subspaces. We utilize several
performance metrics for our comparisons, selected on the basis
of the individual characteristics of each experiment. Regarding
model order selection for the GMR and QGMR methods, we
repeat our experiments for various numbers of model states Q,
and detect the values yielding the lowest generalization error
rates. All our experiments are conducted with the hyperparam-
eter γ of the QGMR model density matrix set equal to γ = 2, a
value heuristically determined to work well for our model.
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TABLE I
DATASETS DETAILS

One-shot learning dataset Multi-shot learning dataset
Units

Task #Data points #Dimensions #Data points #Dimensions

Blocking 445 11 2175 8 rad
Ph. Education 355 5 849 5 rad
Lazy figure 8 242 6 717 5 rad

Lazy figure 8 end-effector 316-337 3 690-712 3 cm

Fig. 1. NAO robot during the L8 experiment.

Fig. 2. Communicative gesture for the violation “Blocking.”

In an attempt to account for the effect of bad local optima
where the EM algorithm might get trapped into in cases of poor
model initialization, all our experiments have been executed
multiple times, each time with different k-means initializations
for the training algorithms of the evaluated models. Means and
standard deviations of the performance of the compared algo-
rithms over the executed multiple runs are provided, and the
statistical significance of these results is assessed. Finally, we
would like to underline that, in all our experiments, we have
ensured that the total number of model component densities is
at least one order of magnitude less than the number of avail-
able training data points (see also Table I and Figs. 4 and 6).
This is a good method to ward off the possibility of model
overfitting [23].

A. One-Shot Learning

In the following set of experiments, we evaluate the ability of
the proposed model to learn and reproduce a skill from a single
demonstration. We briefly describe the experiments below; more
details concerning the used datasets are provided in Table I.

1) Lazy figure 8: In this experiment, we evaluate the consid-
ered methods in terms of their applicability in teaching
a robot by demonstration how to draw a complex figure.
The considered figure comprises a lazy figure 8 (L8) (see
Fig. 1). The L8 generation task is a classical benchmark
for pattern generation methodologies [31], [32]. From the
first impression, the task appears to be trivial, since an

8 figure can be interpreted as the superposition of a sine
on the horizontal direction and a cosine of half the sine’s
frequency on the vertical direction. A closer inspection
though will reveal that in reality, this seemingly innocent
task entails surprisingly challenging stability problems,
which come to the fore especially when using very lim-
ited model training datasets. The dataset used consists of
joint angle data from drawing three consecutive L8s.

2) Upper body motion: In the case of upper body motion, our
experiments involve a higher number of joints, thus fur-
ther increasing the dimensionality and, consequently, the
complexity of the addressed problem. We examine learn-
ing and reproduction of a communicative gesture used by
Basketball officials, with potential applicability in the case
of a robotic referee. We have chosen a gesture that poses
a challenge on the learning by demonstration algorithm in
terms of the implied motion complexity, namely, the sign
concerning the violation “blocking”1 (see Fig. 2).

3) Lower body motion: Finally, we examine an experimental
case involving movement of the lower robot body, simu-
lating a lower abdominal muscle exercise (see Fig. 3). This
is one of the scenarios under investigation of the ALIZ-E
EU FP7 project (aliz-e.org), where robots are used as com-
panions to diabetic and obese children in pediatric ward
settings over extended time periods, and learn along with

1Also referred to as “traveling.”
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Fig. 3. Ph. education exercise for the lower abdominal muscles.

the children various sensorimotor activities (e.g., dance,
games, and physical exercises) so that they can practice
and improve together.

In this set of experiments, we wish to investigate the overall
accuracy of reproduction of the learned trajectories. Therefore,
we choose as our performance metric the mean square error
(MSE) calculated over the whole length of the obtained trajec-
tories. Especially in the case of the L8s experiment, we also
compute the end-effector MSE so as to assess the accuracy of
the eventual reproduction of the figures. The training trajectories
are presented to the NAO robot by means of kinesthetics;2 dur-
ing this procedure, joint position sampling is conducted, with
the sampling rate equal to 10 Hz. The number of joints ac-
tively participating in each experiment varies according to the
specification of the performed motion types.

In our experiments, we use the training sequences obtained
from human demonstrators (through kinesthetics) without fur-
ther preprocessing. As such, our datasets also contain informa-
tion pertaining to joints with minor contribution to the learned
movements, thus further increasing the difficulty of the tasks.
According to our experimental scenario, during the testing
phase, the evaluated algorithms are initialized at points ob-
tained by adding uniformly distributed noise U(0, 1) to the
initial points of the training sequences, and the algorithms are
executed to regenerate the (rest of the) learnt trajectories.

The error means and standard deviations resulting from 20
independent, but common for both methods, random initializa-
tions of the GMR and QGMR models are presented in Fig. 4.
The best mean MSE for each method and the associated standard
deviation, along with the LGPR error, are presented in Table II.
In Table II, we have calculated the mean MSE along with its
standard deviation for each value of the number of states, and
presented the best result. We have also applied the Student-t
statistical test on the obtained results to establish the statistical
significance of our findings. The outcome of this statistical test
is presented in Table IV; based on our findings, we can defini-
tively deduce that, in every experiment, there is a statistically
significant difference between the two main evaluated methods,
namely, the GMR and the proposed QGMR algorithm.

2Manually moving the robot’s arms and recording the joint angles.

Additionally, from Fig. 4, we observe that GMR suffers from
higher volatility and higher MSE errors than the QGMR ap-
proach, which achieves not only better but also more consistent
results. Finally, we observe that an insufficient number of states
are translated in slightly higher MSEs for both the evaluated
methods, and also in higher model performance volatility. From
Table II, we can conclude that the mean error obtained by the
GMR is from twice as high to approximately one order of magni-
tude higher than the QGMR. LGPR yielded competitive results;
however, the results were clearly inferior to our approach in
most cases.

As previously mentioned, especially in the case of the L8s
experiment, we are interested to evaluate the end-effector error.
This result is obtained by reproducing the original demonstra-
tion, as well as the predicted data generated by both the GMR
and QGMR methods. Specifically, the NAO robot is given the
joint angles of the demonstration and the model-predicted data.
The end-effector positions are recorded and the resulting trajec-
tories obtained by using the GMR and QGMR-generated pre-
dictions are then separately aligned with the end-effector data
from the original demonstration. This way, we ensure fairness
for both methods. We have chosen a case where both methods’
performance is neither the best nor the worst, for which the cor-
responding end-effector MSE results are presented in Table III.

B. Multishot Learning

In this experimental case, we use multiple demonstrations of
each task so as to capture the variability of the human action,
and evaluate our model’s ability to generalize learned trajecto-
ries. More specifically, the tasks in question are the same ones
described in the one-shot experimental scenario, namely, the
L8, Ph. education exercise, and Blocking communicative ges-
ture. The training trajectories are again presented to the NAO
robot by means of kinesthetics; during this procedure, joint po-
sition sampling is conducted, with the sampling rate now equal
to 20 Hz. For each of the three tasks, we have recorded four
demonstrations and used three for training and one for testing
purposes. Due to the temporal variations observed in the demon-
strations, we have preprocessed the sequences using dynamic
time warping (DTW) [33], a method first used in speech recog-
nition for signal alignment, combined with a low-pass filter to
smooth the resulting trajectories. In Table I, we present some
details concerning the number of points and the dimensionality
of each dataset. It should be noted that the number of points for
the multishot experiments is considerably higher compared with
the one-shot scenario due to the higher sampling frequency as
well as the oversampling that occurs as a result of the alignment
of the trajectories.

The error metric used in this case is the MSE, as we are again
interested in the overall accuracy of movement reproduction. We
would like to emphasize that, in our experiments,comparison of
the reproduced trajectories to the demonstrated trajectories has
been conducted using the time-aligned trajectories obtained by
application of DTW. As such, the calculated MSE statistics
provide a genuine assessment of the performance difference
between the evaluated methods, not affected by reproduction
delays.
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Fig. 4. One-shot learning experiments: Mean and standard deviation of the MSE over the executed repetitions as a function of model size. Blue: GMR, Green:
QGMR. (a) Blocking communicative gesture experiment. (b) Ph. education exercise experiment. (c) Drawing L8s experiment.

TABLE II
ONE-SHOT AND MULTISHOT LEARNING EXPERIMENTS: BEST MEAN MSE RESULTS FOR ALL EVALUATED METHODS

One-shot learning MSE Multi-shot learning MSE
Task GMR LGPR QGMR GMR LGPR QGMR

Blocking 3.8 · 10−4 (±1 · 10−4) 8.5 · 10−5 1.1 · 10−5 (±1.6 · 10−5) 0.0215 (±0.0024) 0.034303 0.0205 (±0.0019)
Ph. Education 0.0017 (±9.7 · 10−4) 10.3 · 10−5 9.5 · 10−5 (±3.5 · 10−5) 0.0927(±0.0671) 0.047290 0.0075(±0.0029)
Lazy figure 8s 3.7 · 10−4 (±6.1 · 10−5) 2.4 · 10−4 6.9 · 10−5 (±3.4 · 10−5) 0.0064 (±9.8 · 10−4) 0.005985 0.0036 (±1.3 · 10−4)

Fig. 5. Multishot learning experiments: Visual representation of the end-effector data from both the original demonstration and the GMR and QGMR methods.
(a) Original demonstration. (b) GMR. (c) QGMR.

TABLE III
END-EFFECTOR MSES FOR THE L8 EXPERIMENT

Task
One-shot learning Multi-shot learning Units
GMR QGMR GMR QGMR

Joint angles error 3.5 · 10−4 6 · 10−5 0.0059 0.0035 rad
End-effector error 0.0206 0.0032 0.2925 0.0571 cm

Additionally, especially for the needs of the L8 experiment,we
have also considered the end-effector error in a manner similar
to the one-shot scenario (see Table III). This way, we are able
to definitively show that the demonstrations are not distorted
by the preprocessing, that the proposed method yields better
end-effector error, and that the proposed QGMR approach is
able to successfully reproduce the demonstration in occasions
where the GMR fails to do so. The visual result of the end-
effector data is presented in Fig. 5, where we can clearly see
that the QGMR result is closer to the original demonstration,
and the GMR performs poorly in the reproduction of the L8
figures.

We have calculated the mean and standard deviation of the
errors from 100 repetitions of the training and testing proce-

dures with common initialization for the GMR and the QGMR
methods in each repetition. The obtained results are presented
in Fig. 6. In Table II, we present the best MSE errors obtained
by all the evaluated methods. To assess the statistical signifi-
cance of our findings, in Table IV, we show the results of the
Student-t test for the number of model states that yields opti-
mal performance. As we observe, compared with our approach,
the GMR method achieves an optimal error two times higher
and one order of magnitude higher in the L8 and Ph. education
experiments, respectively. Fig. 6 also reveals lower errors and
higher consistency of the results. As far as the “Blocking” ex-
periment is concerned, the optimal error results are much closer
for the two evaluated methods. However, the QGMR method
again achieves lower and more consistent errors, especially for
a higher number of states. Moreover, the Student-t test rejects,
with very high certainty, the null hypothesis that the error val-
ues of the two methods follow the same distribution. Similar to
the one-shot learning scenario, GMR is unable to successfully
reproduce any of the learned trajectories. Regarding LGPR, we
observed competitive performance, which, however, is clearly
inferior to our approach.
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Fig. 6. Multishot learning experiments: Mean and standard deviation of the MSE over the executed repetitions as a function of model size. Blue: GMR, Green:
QGMR. (a) “Blocking” communicative gesture experiment. (b) Ph. education exercise experiment. (c) Drawing L8s experiment.
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Fig. 7. Goodness of fit graph: Black: Training set; Green: Testing set; Red: GMR; and Blue: QGMR. (a) “Blocking” communicative gesture. (b) Ph. education
experiment. (c) L8s experiment.

TABLE IV
STATISTICAL SIGNIFICANCE RESULTS FROM THE STUDENT-T TEST

Obtained p-values below 10-2 indicate high statistical significance.

Task
One-shot Multi-shot

Null hypothesis p-value Null hypothesis p-value
Blocking rejected 2.5 · 10−22 rejected 4.8 · 10−6

Ph. Education rejected 3.7 · 10−32 rejected 5.2 · 10−17

Lazy Figure 8s rejected 1.9 · 10−53 rejected 1.8 · 10−42

In conclusion, in Fig. 7, we present a graphical representa-
tion of the fit of the model to the data, where we depict the
three training sequences (black), the testing sequence (green),

the GMR-predicted data (red), and the means and standard de-
viations of the QGMR model. As all trajectories are of high
dimensionality, this graph was obtained by effectively reducing
the data dimensions to D = 2, by application of the Karhunen–
Loeve transform. In order to calculate the corresponding covari-
ance matrices of the model in this low-dimensional space, we
sampled from the distributions {N(μj ,Σj )}Q

j=1 , where Q is the
number of model states, and subsequently found the covariance
matrices of the low-dimensional projections of the sampled data.
We observe that the QGMR model fits the data very well, which
is not always the case for the GMR method. We also observe
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that in those segments where the demonstration trajectories dif-
fer from each other, there is also a high uncertainty of the model
fit.

VI. CONCLUSION

In this paper, we presented a quantum-statistical approach to-
ward trajectory-based robot learning by demonstration. The pro-
posed approach is based on an extension of conventional GMR
formulations, effected by introducing the concept of quantum
states, which can be constructed by superposing conventional
GMR model states in a linear fashion. To derive our model, we
reformulated the expression of the likelihood of conventional
GMR models into a special form (diagonal) density matrix, and
we further showed that this matrix can be generalized into a
more generic, nondiagonal form.

The so-obtained quantum GMR model was applied to yield a
quantum-statistical approach toward robot learning by demon-
stration, and its efficacy was illustrated by considering a num-
ber of demanding robot learning by demonstration scenarios,
with its performance being compared with state-of-the-art robot
learning by demonstration methodologies. As we showed, our
method allows for a significant performance increase, while im-
posing computational requirements similar to its alternatives,
since prediction under all these approaches eventually reduces
to a sum of linear regression models. Based on our results, we
can definitively conclude that the proposed approach is espe-
cially suitable for learning complex demonstration trajectories,
under both a sparse one-shot and a multishot learning setting.
The MATLAB implementation of the QGMR method shall be
made available through the website of the authors.
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