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Abstract

In this work, we propose a novel nonparametric Bayesian method for clustering
of data with spatial interdependencies. Specifically, we devise a novel normalized
Gamma process, regulated by a simplified (pointwise) Markov random field
(Gibbsian) distribution with a countably infinite number of states. As a result of
its construction, the proposed model allows for introducing spatial dependencies
in the clustering mechanics of the normalized Gamma process, thus yielding a
novel nonparametric Bayesian method for spatial data clustering. We derive
an efficient truncated variational Bayesian algorithm for model inference. We
examine the efficacy of our approach by considering an image segmentation
application using a real-world dataset. We show that our approach outperforms
related methods from the field of Bayesian nonparametrics, including the infinite
hidden Markov random field model, and the Dirichlet process prior.
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1. Introduction

Nonparametric Bayesian modeling techniques, especially Dirichlet process
mixture (DPM) models, have become very popular in statistics over the last
few years, for performing nonparametric density estimation (Walker et al., 1999;
Neal, 2000; Muller and Quintana, 2004). This theory is based on the observation
that an infinite number of component distributions in an ordinary finite mixture
model (clustering model) tends on the limit to a Dirichlet process (DP) prior
(Neal, 2000; Antoniak, 1974). Indeed, although theoretically a DPM model has
an infinite number of parameters, it turns out that inference for the model is
possible, since only the parameters of a finite number of the mixture compo-
nents need to be represented explicitly. Eventually, the nonparametric Bayesian
inference scheme induced by a DPM model yields a posterior distribution on the
proper number of model component densities (inferred clusters) (Blei and Jor-
dan, 2004), rather than selecting a fixed number of mixture components. Hence,
the obtained nonparametric Bayesian formulation eliminates the need of doing
inference (or making arbitrary choices) on the number of mixture components
(clusters) necessary to represent the modeled data.

Markov random fields (MRFs) (Orbanz and Buhmann, 2008) are a classi-
cal methodology for modeling spatially-interdependent data. In essence, MRFs
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impose a Gibbsian distribution over the allocation of the modeled data into
states (clusters), which enforces the belief that spatially adjacent data are more
likely to cluster together. As the Gibbsian prior imposed by MRFs entails com-
plex calculations that make it intractable in real-world problems dealing with
large datasets, efficient approximations of the full MRF distribution are usually
employed. For example, a pointwise simplification of the MRF prior based on
the mean-field principle from statistical mechanics (Zhang, 1993) was employed
in Celeux et al. (2003). Recently, MRFs have also been used in the context
of Bayesian nonparametrics yielding the infinite hidden Markov random field
(iHMRF) model (Chatzis and Tsechpenakis, 2009, 2010). This model obtains a
joint MRF-Dirichlet process prior for spatially-constrained data clustering. As
such, it introduces a nonparametric Bayesian approach to hidden MRF mod-
els, that is a novel formulation for such models that entails a countably infinite
number of constituent states.

Inspired by these advances, in this paper we come up with a different ap-
proach towards clustering data with spatial interdependencies. We propose a
spatially-adaptive random measure, coined the Markov random field normal-
ized Gamma process (MRF-NGP). Our model is based on the introduction of
a normalized Gamma process (NGP) controlled by an additionally postulated
pointwise Markov random field imposed over the data allocation into model
states, obtained by application of the mean-field principle (Chatzis and Tsech-
penakis, 2009). As a result of its construction, the proposed prior discounts
or increases the probability of cluster allocation for each observed data point
depending on the allocation of the rest of the data points in its neighborhood,
where the neighborhoods are defined as sets of spatially interdependent data
points in the modeled datasets. We provide an efficient truncated algorithm for
model inference based on the variational Bayesian paradigm. We empirically
study the performance of the MRF-NGP prior in an image segmentation ap-
plication, using a publicly available benchmark dataset, and compare it to the
iHMRF model and the Dirichlet process prior.

The remainder of this paper is organized as follows: In Section 2, we pro-
vide a brief presentation of the theoretical background of the proposed method.
Initially, we review the Dirichlet process and its function as a prior in nonpara-
metric Bayesian models; subsequently, we briefly describe the theory of Markov
random fields, and their pointwise approximations obtained on the basis of the
mean-field principle. In Section 3, the proposed nonparametric prior for clus-
tering data with spatial dependencies is introduced, and an efficient variational
Bayesian algorithm for model inference is derived. In Section 4, the experimental
evaluation of the proposed algorithm is conducted, considering an unsupervised
image segmentation application using benchmark data. In the final section, our
results are summarized and discussed.
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2. Theoretical Background

2.1. The Dirichlet Process

Dirichlet process (DP) models were first introduced in Ferguson (1973). A
DP is characterized by a base distribution G0 and a positive scalar α, usually re-
ferred to as the innovation parameter, and is denoted as DP(α,G0). Essentially,
a DP is a distribution placed over a distribution. Let us suppose we randomly
draw a sample distribution G from a DP, and, subsequently, we independently
draw M random variables {Θ∗m}Mm=1 from G:

G|α,G0 ∼ DP(α,G0) (1)

Θ∗m|G ∼ G, m = 1, . . .M (2)

Integrating out G, the joint distribution of the variables {Θ∗m}Mm=1 can be shown
to exhibit a clustering effect. Specifically, given the first M − 1 samples of
G, {Θ∗m}M−1

m=1 , it can be shown that a new sample Θ∗M is either (a) drawn
from the base distribution G0 with probability α

α+M−1 , or (b) is selected from
the existing draws, according to a multinomial allocation, with probabilities
proportional to the number of the previous draws with the same allocation
(Blackwell and MacQueen, 1973). Let {Θc}Cc=1 be the set of distinct values
taken by the variables {Θ∗m}M−1

m=1 . Denoting as fM−1
c the number of variables

in {Θ∗m}M−1
m=1 that equal to Θc, the distribution of Θ∗M given {Θ∗m}M−1

m=1 can be
shown to be of the form (Blackwell and MacQueen, 1973)

p(Θ∗M |{Θ∗m}M−1
m=1 , α,G0) =

α

α+M − 1
G0

+

C∑
c=1

fM−1
c

α+M − 1
δΘc

(3)

where δΘc
denotes the distribution concentrated at a single point Θc. These

results illustrate two key properties of the DP scheme. First, the innovation
parameter α plays a key-role in determining the number of distinct parameter
values. A larger α induces a higher tendency of drawing new parameters from
the base distribution G0; indeed, as α → ∞ we get G → G0. On the contrary,
as α→ 0 all {Θ∗m}Mm=1 tend to cluster to a single random variable. Second, the
more often a parameter is shared, the more likely it will be shared in the future.

A characterization of the (unconditional) distribution of the random variable
G drawn from a Dirichlet process DP(G0, α) is provided by the stick-breaking
construction of Sethuraman (1994). Consider two infinite collections of inde-
pendent random variables v = (vc)

∞
c=1, {Θc}∞c=1, where the vc are drawn from

the Beta distribution Beta(1, α), and the Θc are independently drawn from the
base distribution G0. The stick-breaking representation of G is then given by
(Sethuraman, 1994)

G =

∞∑
c=1

$c(v)δΘc
(4)
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where

$c(v) = vc

c−1∏
j=1

(1− vj) ∈ [0, 1] (5)

and
∞∑
c=1

$c(v) = 1 (6)

The stick-breaking representation of the DP makes clear that the random vari-
able G drawn from a DP is discrete. It shows explicitly that the support of G
consists of a countably infinite sum of atoms located at Θc, drawn independently
from G0. It is also apparent that the innovation parameter α controls the mean
value of the stick variables, vc, as a hyperparameter of their prior distribution;
hence, it regulates the effective number of the distinct values of the drawn atoms
(Sethuraman, 1994).

2.2. Markov random fields
We consider an alphabet Q = {1, ...,K}. Let S be a finite index set, S =

{1, ..., N}; we shall refer to this set, S, as the set of sites or locations. Let us
consider for every site j ∈ S a finite space Zj of states zj , such as Zj = {zj :

zj ∈ Q}. The product space Z =
∏N
j=1Zj will be denoted as the space of the

configurations of the state values of the considered sites set, z = (zj)j∈S . A
strictly positive probability distribution, p(z), z ∈ Z, on the product space Z
is called a random field (Maroquin et al., 1987).

Let ∂ denote a neighborhood system on S, i.e. a collection ∂ = {∂j : j ∈ S}
of sets, such as j /∈ ∂j and l ∈ ∂j if and only if j ∈ ∂l ∀l, j ∈ S. Then, the
previously considered random field, p(z), is a Markov random field with respect
to the introduced neighborhood system ∂ if (Geman and Geman, 1984)

p(zj |zS−{j}) = p(zj |z∂j ) ∀j ∈ S (7)

The distribution p(z) of a Markov random field can be shown to be of a Gibbsian
form (Clifford, 1990):

p(z) ,
1

W (γ)
exp

(
−
∑
c∈C

Vc(z|γ)

)
(8)

where γ is the inverse temperature of the model, W (γ) is the (normalizing)
partition function of the model, Vc(z|γ) are the clique potentials of the model,
and C is the set of the cliques included in the model neighborhood system.

A significant problem of MRF models concerns computational tractability,
as the normalizing term W (γ) is hard to compute in applications dealing with
large datasets. Usually, these computations are conducted by means of Bayesian
sampling, e.g. using Markov chain Monte Carlo methods Chalmond (1989).
Nevertheless, such methods still require a large amount of computation. An
alternative to these approaches is the mean-field approximation (Zhang, 1993;
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Chatzis and Varvarigou, 2008). It is based on the idea of neglecting the fluctua-
tions of the sites interacting with a considered site, so that the resulting system
behaves as one composed of independent variables for which computation be-
comes tractable. That is, given an estimate ẑ of the unknown site labels vector
z, obtained by means of a stochastic restoration criterion, such as the iterative
conditional modes (ICM) or the marginal posterior modes (MPM) algorithm
(see, e.g., Geman and Geman (1984); Chatzis and Varvarigou (2008)), we make
the hypothesis (Qian and Titterington, 1991)

p(z) =

N∏
j=1

p(zj |ẑ∂j ; γ) (9)

where

p(zj = i|ẑ∂j ; γ) =
exp(−

∑
c3j Vc(z̃ij |γ))∑K

h=1 exp(−
∑
c3j Vc(z̃hj |γ))

(10)

z̃ij , (zj = i, ẑ∂j ), ẑ∂j is the estimate of the jth site neighborhood, and the
indexes c refer to the cliques that contain the jth site.

3. Proposed Approach

3.1. Model Formulation

Let us consider a set of observations Y = {yn}Nn=1, yn ∈ Y, measured over
a set of sites S = {1, ..., S} on which a neighborhood system ∂ is defined. Let
us denote as X = {xn}Nn=1, xn ∈ S, the sites where the observed data points
{yn}Nn=1 were measured. We aim to obtain a clustering algorithm which takes
into account the prior information regarding the adjacencies of the observed
data in the neighborhood system ∂, promoting clustering of data measured in
positions adjacent in the neighborhood system ∂, and discouraging clustering of
data points relatively near in the feature space Y but measured in remote loca-
tions in ∂. For this purpose, we seek to provide an MRF-driven nonparametric
prior for clustering the observed data Y .

Let us introduce the latent variables {zn}Nn=1 denoting the model state (clus-
ter) where an observed data point yn measured at the location xn is assigned by
our model. Motivated by merits and the theory of the DP discussed in the pre-
vious section, to derive the sought model, we make the key-assumption, based
on the mean-field-based approximation of the MRF distribution, that for any
given site xn, we have available an estimate ẑ∂n of the value z∂n , (zm)m∈∂n
of the latent cluster assignment variables of the observations measured at sites
in the neighborhood of site xn. Apparently, this assumption entails a priori
application of a methodology for obtaining an initial estimate of the latent vari-
ables {zn}Nn=1 for the modeled data, as discussed in Section 2.2. Additionally,
it requires updating of these estimates on each iteration of the model inference
algorithm, as we shall discuss in Section 3.2. Further, we consider the following
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predictor (location)-dependent random measure

G(x) =

∞∑
i=1

$i(x)δΘi (11)

where
$i(x) =

Λi(x)∑∞
j=1 Λj(x)

(12)

the random variables Λi follow a Gamma distribution as

Λi|xn ∼ G(αki(xn; ẑ∂n), 1) (13)

α is the innovation parameter of the process, ki (xn; ẑ∂n) is the probability of
the nth site being assigned to the ith cluster as computed by the employed
pointwise MRF distribution

ki (xn; ẑ∂n) ,p
(
zn = i

∣∣ẑ∂n ; γ
)

=
exp(−

∑
c3xn

Vc(z̃ni|γ))∑∞
h=1 exp(−

∑
c3xn

Vc(z̃nh|γ))

(14)

z̃ni , (zn = i, ẑ∂n), ẑ∂n is the current estimate of the nth site neighborhood,
Vc(·) are the employed clique potential functions, and the indexes c refer to the
cliques that include the nth site, xn. The utility of the pointwise MRF distribu-
tion ki (xn; ẑ∂n) in our model consists in reducing the probability (discounting)
of clusters that seem rather unlikely from the viewpoint of the postulated neigh-
borhood system. We dub this random probability measure G(x) the MRF-NGP
process. A proof that the normalizing constant in the denominator of (12) is
finite almost surely is provided in the Appendix.

3.2. Variational Bayesian Inference
Inference for nonparametric models can be conducted under a Bayesian set-

ting, typically by means of variational Bayes (e.g., Blei and Jordan (2006)), or
Monte Carlo techniques (e.g., Qi et al. (2007)). Here, we prefer a variational
Bayesian approach, due to its considerably better scalability in terms of compu-
tational costs, which becomes of importance when dealing with large datasets.
Let us a consider a set of observations Y = {yn}Nn=1 with corresponding loca-
tions X = {xn}Nn=1. We postulate for our observed data a likelihood function
of the form

p(yn|zn = i) = p(yn|θi) (15)

while for the latent assignment variables zn we consider

p(zn = i|xn) = $i(xn) (16)

where the $i(x) are given by (12), with the prior over the Λi(x) given by (13).
Regarding the likelihood parameters θi, we impose a suitable conjugate expo-
nential prior over them; for instance, in case of a Gaussian likelihood function

p(yn|θi) = N (yn|µi,Ri) (17)
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we impose a Normal-Wishart prior over the likelihood parameters θi = {µi,Ri},
i.e.

p(µi,Ri) = NW(µi,Ri|λi,mi, ωi,Ωi) (18)

Regarding the MRF temperature parameter γ, and the innovation parameter α,
we choose to optimize them as model hyperparameters, as part of the variational
inference procedure discussed next.

Our variational Bayesian inference formalism consists in derivation of a fam-
ily of variational posterior distributions q(.) which approximate the true pos-
terior distribution over the infinite sets {zn}Nn=1, {Λi(xn)}∞,Ni,n=1, and {θi}∞i=1.
Apparently, under this infinite dimensional setting, Bayesian inference is not
tractable. For this reason, we employ a common strategy in the literature of
Bayesian nonparametrics: we fix a value K and we let the variational posterior
over the Λk(x) have the property q(Λk>K(x) = 0) = 1, ∀x ∈ S (Blei and Jor-
dan, 2006). In other words, we set $k(x) equal to zero for k > K, ∀x ∈ S. Note
that, under this setting, the treated model involves a full MRF-NGP prior; trun-
cation is not imposed on the MRF-NGP prior itself, but only on the variational
distribution to allow for a tractable inference procedure. Hence, the truncation
level K is a variational parameter which can be freely set, and not part of the
prior model specification.

Let W = {{zn}Nn=1, {(Λk(xn))Kk=1}Nn=1, {θk}Kk=1} be the set of the parame-
ters of our truncated model over which a prior distribution has been imposed,
and Ξ be the set of the hyperparameters of the model, comprising the γ, the
innovation parameter α, and the hyperparameters of the priors over the like-
lihood parameters θk of the model. Variational Bayesian inference consists in
derivation of an approximate posterior q(W ) by maximization (in an iterative
fashion) of the variational free energy

L(q) =

ˆ
dWq(W )log

p(X,Y,W |Ξ)

q(W )
(19)

which provides a lower bound to the computationally intractable log marginal
likelihood (log evidence), logp(X,Y ), of the model (Jordan et al., 1998).

Having considered a conjugate exponential prior configuration, the varia-
tional posterior q(W ) is expected to take the same functional form as the prior,
p(W ) (Bishop, 2006). Thus, the variational free energy of our model reads
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(ignoring constant terms)

L(q) =

K−1∑
k=1

N∑
n=1

ˆ
dΛk(xn)q(Λk(xn))log

p(Λk(xn))

q(Λk(xn))

+

K∑
k=1

ˆ
dθkq(θk)log

p(θk)

q(θk)
+

K∑
k=1

N∑
n=1

q(zn = k)

×
{ˆ

dΛ(xn)q(Λ(xn))logp(zn = k|xn)

− logq(zn = k) +

ˆ
dθkq(θk)logp(yn|θk)

}
(20)

whereΛ(x) = (Λk(x))Kk=1. Based on Jensen’s inequality, the term
´

dΛ(xn)q(Λ(xn))logp(zn =
i|xn) in (20) yields

ˆ
dΛ(xn)q(Λ(xn))logp(zn = i|xn)

=

ˆ
dΛ(xn)q(Λ(xn))log

Λi(xn)∑K
j=1 Λj(xn)

=

ˆ
dΛ(xn)q(Λ(xn))

[
logΛi(xn)− log

K∑
j=1

Λj(xn)

]
≥
ˆ

dΛ(xn)q(Λ(xn))logΛi(xn)

− log

K∑
j=1

ˆ
dΛ(xn)q(Λ(xn))Λj(xn)

(21)

This latter result shall be exploited to obtain the variational posteriors of our
model in the analysis that follows.

3.3. Variational Posteriors
Derivation of the variational posterior distribution q(W ) involves maximiza-

tion of the variational free energy L(q) over each one of the factors of q(W )
in turn, holding the others fixed, in an iterative manner (Chandler, 1987). By
construction, this iterative, consecutive updating of the variational posterior
distribution is guaranteed to monotonically and maximally increase the free en-
ergy L(q), which functions as the convergence criterion of the derived inference
algorithm for our model (Chatzis et al., 2008).

The derived algorithm is in essence an expectation-maximization-like algo-
rithm. Each iteration comprises an E-step, on which the variational posteriors
over the model latent variables are computed, and an M-step, on which the
variational posteriors over the model parameters are updated. Let us denote as
〈.〉 the posterior expectation of a quantity.
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3.3.1. M-step
This step comprises the updates of the Gamma-distributed variables Λi(xn)

q(Λi(xn)) = G(Λi(xn)|βni, ξni) (22)

where
βni = αki(xn; ẑ∂n) + q(zn = i) (23)

ξni =1 +
1∑K

j=1 〈Λj(xn)〉 (24)

and

〈Λj(xn)〉 =
βnj
ξnj

(25)

as well as of the parameters θi, for which we obtain the general solution

logq(θi) ∝ logp(θi) +

N∑
n=1

q(zn = i)logp(yn|θi) (26)

which is similar to the corresponding solution for models imposing simple DP
priors over their cluster assignment distributions.

3.3.2. E-step
This step comprises the updates of the posteriors q(zn = i):

q(zn = i) ∝ exp (〈logΛi(xn)〉) exp (ϕni) (27)

where
〈logΛi(xn)〉 = ψ(βni)− logξni (28)

and
ϕnj = 〈logp(yn|θj)〉 (29)

It also consists in updating the estimates of the assignment variables ẑ =
(ẑn)Nn=1 which are used in computing the pointwise MRF priors employed in
our model to regulate cluster discounting. For this purpose, we simply set

ẑn = argmaxKi=1q(zn = i) (30)

Finally, regarding the model hyperparameters Ξ, their values can be either
heuristically selected or estimated by means of type-II maximum likelihood.
Indeed, in this work, we obtain estimates of the hyperparameter γ by maxi-
mization of the lower bound L(q), and we heuristically select the values of the
rest of the model hyperparameters.
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Figure 1: Few selected 321x481 images from the Berkeley image segmentation
dataset. Left-to-right: a) Original image, b) One human groundtruth, c) K-
means initialization, d) iHMRF, e) MRF-NGP. Top-to-bottom: a) #241004,
b) #161062, c) #385028, d) #301007, e)#25098, f)#246053.
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Figure 2: Example of superpixel segmentation (Mori, 2005).

Table 1: Obtained PRI results for the considered subset of the Berkeley bench-
mark.

Image # DPM iHMRF MRF-NGP
159029 0.7688 0.7727 0.7842
20008 0.8376 0.8514 0.8478
100075 0.7851 0.7795 0.7861
301007 0.8438 0.8432 0.8460
122048 0.7396 0.7520 0.7421
145053 0.6189 0.6315 0.7304
236017 0.5997 0.6035 0.6346
170054 0.6841 0.7453 0.7628
385028 0.8520 0.8393 0.8544
67079 0.7344 0.7347 0.7599
209070 0.6335 0.7006 0.7380
27059 0.8359 0.8470 0.8669
176019 0.6930 0.7470 0.7343
246053 0.5896 0.6006 0.6526
239096 0.7570 0.7957 0.7871
323016 0.8283 0.8436 0.8479
231015 0.8019 0.8185 0.8138
25098 0.8270 0.8231 0.8394
8143 0.6294 0.6605 0.7011
35010 0.7701 0.7854 0.8051
15004 0.7561 0.7865 0.7994
100080 0.8067 0.8093 0.8036
161062 0.6610 0.6280 0.6742
159045 0.6984 0.7315 0.7482
170057 0.6948 0.7243 0.7498
89072 0.7377 0.7590 0.7841
175032 0.5594 0.6783 0.6686
86016 0.7379 0.7664 0.7573
103070 0.7164 0.7307 0.7530
241004 0.8643 0.8642 0.8738
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Table 2: Mean and median of the PRI metric across the considered subset of
the Berkeley benchmark.

PRI(%) DPM iHMRF MRF-NGP
Mean 73.54 75.51 77.15
Median 73.88 76.27 77.34

4. Experimental Evaluation

Here, we investigate the efficacy of our approach considering an unsupervised
image segmentation application. Specifically, we consider segmentation of real-
world images, using a subset of the Berkeley image segmentation benchmark
(Martin et al., 2001). The Berkeley image segmentation benchmark comprises a
set of 300, 321x481 real-world color images along with their segmentation maps
provided by different individuals. Given the multiple groundtruths available for
each image within the used dataset, to obtain an objective performance eval-
uation of the proposed algorithm, we employ the probabilistic rand index (PR
index or PRI) (Unnikrishnan et al., 2005). The PR index counts the fraction
of pairs of pixels whose labelings are consistent between a computed segmen-
tation and the given groundtruth, averaging across multiple groundtruth seg-
mentations to account for scale variation in human perception. Denoting as
G = {G1, G2,...GM} a set of groundtruth images, and as Geval a segmentation
map under evaluation, it holds

PR(Geval, G) =
2

s(s− 1)

∑
i

∑
j>i

[cijpij + (1− cij)(1− pij)] (31)

where cij = 1 if pixels i and j belong to the same segment in Geval, cij = 0
otherwise, s is the number of image pixels, and pij is the groundtruth probability
that pixels i and j belong to the same segment, that is the fraction of the
available groundtruths where pixels i and j belong to the same segment. It
has been shown (Unnikrishnan and Hebert, 2005) that the PR index possesses
the desirable property of being robust to segmentation maps resulting from
groundtruth segment splitting or merging. It takes values between 0 and 1,
with the values close to 0 indicating a bad segmentation result, and the values
close to 1 indicating a good result.

In all our experiments, we use Gaussian likelihoods and choose to impose a
Normal-Wishart prior over the likelihood parameters. We compare the perfor-
mance of our approach to iHMRF and DPM, both using the same likelihood
function and prior over the likelihood function parameters as in the case of our
model. All the evaluated algorithms are initialized by means of the k-means al-
gorithm. Regarding the potential functions of the imposed pointwise MRFs for
both the evaluated iHMRF and MRF-NGP models, we opt for a simple Potts
model with a second order (8-neighbors) neighborhood system, yielding

p(zn = c|ẑ∂n ; γ) =
exp(γ

∑
l∈∂n δ(c− ẑl))∑K

h=1 exp(γ
∑
l∈∂n δ(h− ẑl))

(32)
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for the pointwise MRF priors, where K is the truncation threshold, and δ(.)
stands for the Kronecker’s delta function, given by

δ(xj − xl) =

{
1, if xj = xl

0, otherwise

Feature extraction is effected as follows: First, each image is segmented into
approximately N = 1000 superpixels using the method proposed in Mori (2005);
an example superpixel segmentation is shown in Fig. 2. We then compute
feature vectors at superpixel level, comprising RGB and HSV color information
along with the values of the Maximum Response (MR) filter banks (Varma and
Zisserman, 2002). The truncation level of the variational Bayesian algorithm
for all the treated models is set to K = 10.

In an attempt to account for the effect of poor model initialization, which
may lead model training to yield bad local optima as model estimators, we exe-
cute our experiments multiple times for each image, with different initializations
each time, common for all the evaluated algorithms. The visual segmentation
result is presented for 6 selected images in Fig. 1, along with the original image,
one human groundtruth, and the initialization. The mean PRI results (over the
executed repetitions) for the whole considered dataset are presented in Table 1.
Total results across all images are presented in Table 2. Based on the obtained
PRI metric results, we can conclude that the MRF-NGP performs considerably
better than all the considered rival methods. Note also that small differences in
the values of the PRI metric correspond to significant differences in the qual-
ity of the obtained segmentation results (Nikou et al., 2007). The illustrated
segmentation results vouch for this assertion.

5. Conclusions

In this paper, we proposed a method for nonparametric clustering of data
with general spatial interdependencies. Our method, coined the MRF-NGP,
consists in postulating a normalized Gamma process, the cluster prior probabil-
ities of which are discounted by means of a simplified pointwise Markov random
field imposed over data point allocation into clusters. As a result of this con-
struction, the MRF-NGP imposes the belief that spatially proximate data are
more likely to cluster together. To examine the efficacy of our approach, we eval-
uated it in unsupervised image segmentation tasks using a real-life benchmark
dataset, namely the Berkeley image segmentation benchmark (Martin et al.,
2001). We showed that it yields a considerable improvement in the obtained
performance of the clustering algorithm compared to both the DPM, and the
recently proposed iHMRF model.

The source codes allowing for the replication of the here presented results
shall be made available through the website of the authors: http://www.iis.
ee.ic.ac.uk/~sotirios.
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Appendix

Here, we prove the almost sure finiteness of the normalizing factor
∑∞
j=1 Λj(xn)

in (12). Let

ST ,
T∑
j=1

Λj(xn) (33)

It follows that S1 ≤ S2 ≤ · · · ≤ ST ≤ · · · ≤ S, where

S , lim
T→∞

ST (34)

since the random variables Λj(xn) are non-negative, as they follow a Beta dis-
tribution.

Then, to prove that S is finite almost surely, we only need to prove that E[S]
is finite. From the monotone convergence theorem, we yield

E[S] = lim
T→∞

E[ST ] = lim
T→∞

T∑
j=1

E[Λj(xn)] = α (35)

since lim
T→∞

∑T
j=1 kj(xn; ẑ∂n) = 1, as the kj(xn; ẑ∂n) comprise prior MRF-derived

probabilities of the observation at the nth site being assigned to any of the pos-
tulated model states. Hence, we have proven that S is finite almost surely.
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