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Abstract

In this work, we propose a novel method for rectifying damaged motion se-

quences in an unsupervised manner. In order to achieve maximal accuracy, the

proposed model takes advantage of three key properties of the data: their se-

quential nature, the redundancy that manifests itself among repetitions of the

same task, and the potential of knowledge transfer across different tasks. In

order to do so, we formulate a factor model consisting of Gaussian Process Dy-

namical Systems (GPDS), where each factor corresponds to a single basic pat-

tern in time and is able to represent their sequential nature. Factors collectively

form a dictionary of fundamental trajectories shared among all sequences, thus

able to capture recurrent patterns within the same or across different tasks.

We employ variational inference to learn directly from incomplete sequences

and perform maximum a-posteriori (MAP) estimates of the missing values. We

have evaluated our model with a number of motion datasets, including robotic

and human motion capture data. We have compared our approach to well-

established methods in the literature in terms of their reconstruction error and

our results indicate significant accuracy improvement across different datasets

and missing data ratios. Concluding, we investigate the performance benefits of
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the multi-task learning scenario and how this improvement relates to the extent

of component sharing that takes place.

Keywords: Gaussian Processes, Variational Bayes, Matrix Decomposition,

Factor Models, Data Completion, Human Motion, Gaussian Process Latent

Variable Models, Multi-task learning, Unsupervised learning

1. Introduction

Although sensor equipment is becoming increasingly precise and reliable

nowadays, it is sometimes impossible to avoid the manifestation of missing data.

Even when using highly expensive motion capture systems, the recorded data

may suffer from severe corruption and/or may require manual rectification. The

problem is intensified in case we employ low-cost equipment, such as the popular

Kinect or LEAP sensors.

The technological advances of the past few years have greatly facilitated the

collection of large amounts of human motion data from a variety of sources

and sensors (i.e. [1]). Despite the significant efforts towards modelling human

behaviour [2, 3] and action recognition [4, 5, 6], these efforts are sometimes

significantly impaired by inevitable data corruption either too costly or even

impossible to repair.

The main approaches employed in the literature for the purpose of data

completion are based on either supervised or unsupervised learning. In super-

vised methods, learning is performed on a set of complete training sequences

and rectification of incomplete sequences is achieved by means of the posterior

predictive distribution of the trained model. A main disadvantage of this ap-

proach is that it may be difficult to obtain a sufficiently large and diverse set of

undamaged training sequences. There are several examples of supervised data

completion in the literature employing a variety of models, such as Gaussian
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Processes (GPs), Hidden Markov Models (HMMs), Linear Dynamical Systems

(LDS) and many more.

On the other hand, unsupervised approaches can be trained directly on the

incomplete data and thus are a rather more realistic scenario for practical ap-

plications. In this case missing data prediction may also be achieved by means

of the model predictive distribution. However, for many models this distribu-

tion is intractable and we resort to approximations such as variational Bayes

(VB) [7], sampling methods [8] or maximum a-posteriori (MAP) [9]. The latter,

although being a rough approximation, is easily applicable in a wider range of

models than VB, is less computationally intensive than sampling and often pro-

vides a good enough estimate. Relevant methods are widely adopted in image

processing, such as inpainting1 [10].

In unsupervised modelling of non-sequential datasets, missing data com-

pletion has previously been approached by means of matrix decomposition

[11, 12, 13]. A variety of algorithms have been proposed over the years, the

great majority of which focuses on point-estimate optimisation imposing vari-

ous types of regularisation constraints for more effective learning [14, 15] and

with many successful applications [16, 17]. Statistical approaches, on the other

hand, enjoy a number of comparative merits stemming from the fact that infer-

ence, rather than optimisation, is employed. As a result, such methods are less

prone to overfitting and have also been reported to achieve superior performance

[18].

Modern statistical methods usually focus on image processing [19, 20] or

collaborative filtering [21, 22], but few have been formulated to explicitly model

temporal data. Furthermore, although unsupervised missing data completion

is common in image inpainting, the concept has not been extensively explored

1Interpolation of the pixels removed from random locations in the image.
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for sequential data, where learning is traditionally performed in a supervised

manner.

A model widely adopted for the purpose of data completion is the Gaussian

process (GP) [23]. This is mainly due to the fact that GPs are powerful non-

parametric models, allowing us to impose high level data characteristics, such as

smoothness, trend or periodicity, by selecting the appropriate functional form of

the kernel matrix. Alternatively to using a single GP, some researchers have ex-

plored linear superpositions of GPs [24], which is shown to increase the model’s

descriptive power, with further relevant examples found in [25] and [26].

Conventional GPs are discriminative models, with their generative counter-

part being the Gaussian process latent variable model (GPLVM), which ac-

counts for the case when no observed covariates are available. The model as-

sumes a lower-dimensional latent input covariate space, giving rise to a powerful

non-linear factor model. GPLVMs have been applied with considerable success

in data visualisation [27], dimensionality reduction [28], classification [29] and

time-series modelling [30]. Their efficacy has also been previously shown in data

completion applications [19].

The underlying concept of the GPLVM has initiated vigorous research in the

field of Gaussian processes, giving rise to a variety of models able to capture

data dynamics in motion and financial time-series [31, 32]. Recently a Bayesian

formulation of the GPLVM has been devised in [33] by using inducing variables

in order to ameliorate some of the intractabilities during inference, a concept

which we extensively utilise in this work.

Further extending the notion of latent covariates towards modelling temporal

data, Damianou et. al. [34] introduced a hierarchical model with an interme-

diate latent layer and a kernel governed by time, dubbed the Gaussian process

dynamical system (GPDS) and later developed the deep Gaussian process [35]
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by introducing multiple such intermediate latent layers.

In this work, we propose a multi-task, multi-kernel model consisting of Gaus-

sian process dynamical system factors that we shall dub the multi-GPDS. We

form a dictionary of non-linear temporal factors shared among multiple tasks

in order to facilitate information transfer across tasks which significantly im-

proves reconstruction accuracy. As highlighted in the experimental section, we

have observed considerable performance improvement, both compared to pop-

ular methods in the literature and compared to training the same model in a

single-task fashion.

1.1. Theoretical Background

1.1.1. Gaussian Processes

A Gaussian process is formally defined as a possibly infinite collection of

random variables [f(x1), f(x2), ...], any finite subset of which follows a joint

Gaussian distribution [36].

More specifically, the training set {y,X} consists of an observation vector

y = [yt]
T
t=1 and a covariate matrix X = [xt]

T
t=1, where, in general, xt lies in a

Q-dimensional space, xt ∈ RQ. The observations are modeled as follows:

yt ∼ N
(
f(xt), σ

2
)

(1)

f ∼ N (0,K(X,X)) (2)

where f = [ft]
T
t=1 and each random variable ft = f(xt) represents the value of

the function given input xt.

In that perspective, a Gaussian process can be viewed as a prior distribution

over the set of all possible functions f(x), with some characteristics dictated by

the functional form of the kernel matrix K(X,X), which for brevity we will

denote as KXX .

5

Preprint version; final version available at http://www.sciencedirect.com/science/article/pii/S0031320316304010
Pattern Recognition (2017)
Published by: Elsevier
DOI: 10.1016/j.patcog.2016.12.014

http://www.sciencedirect.com/science/article/pii/S0031320316304010
https://doi.org/10.1016/j.patcog.2016.12.014


For a set of test covariates X∗ (previously unseen inputs), direct inference

is tractable and the predictions vector f∗ can be found as follows:

 y

f∗

 ∼ N
0,

 KXX + σ2I KXX∗

KX∗X KX∗X∗


 (3)

E [f∗|D,X∗] = KX∗X

[
KXX + σ2I

]−1
y (4)

V [f∗|D,X∗] = KX∗X∗ −KX∗X

[
KXX + σ2I

]−1
KXX∗ (5)

Being able to perform direct inference for this model is very convenient,

although it does not scale well with the size of the training set as it is dominated

by the inversion of an T × T matrix with complexity O
(
T 3
)
.

In order to model multi-dimensional data, we could either impose a common

or independent GP priors per dimension, with the latter being preferable to the

former [23].

1.1.2. Gaussian Process Latent Variable Models

Let us now suppose a multi-dimensional set of observations Y ∈ RT×D and

no known corresponding covariates X. We may still assume that the observed

data can be accurately represented by a latent covariate space X ∈ RT×Q of

lower dimensionality Q� D through a non-linear relationship.

Given the latent covariate space X, the GPs are postulated to be indepen-

dent across dimensions, giving rise of the following factorisation.

p(Y |X) =

D∏
i=1

p (yi|X) (6)

where as yi we denote a vector consisting of the ith column of Y . Note that we

follow a completely analogous notation for the rest of this work.
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The corresponding probability distribution of yi is given by:

p (yi|X) = N
(
yi|0,KXX + σ2I

)
(7)

1.1.3. Spike-and-slab Gaussian process

The spike and slab GP was first introduced in [24] and is described by eq.

8-12. On a higher level, this is a factor model with loading matrixW and latent

factor f j on which the authors impose a GP prior, with covariate matrix X.

yti ∼ N

yti| Nh∑
j=1

wijfj(xt), σ
2
i

 (8)

wij = ŵijhij (9)

ŵij ∼ N (ŵij |0, γ−1j ) (10)

hij ∼ Bernoulli(πj) (11)

f j ∼ GP(f j |0,K(X,X)) (12)

An additional contribution of this work is the spike-and-slab prior on the

loading matrix, in order to achieve an automatic factor selection functional-

ity and the "coupled" inference performed for estimating the posterior. More

specifically, variational posteriors are formulated jointly for the "spike" (hij)

and "slab" (ŵij) variables, as follows: q(ŵnj , hnj) = q(hnj)q(ŵnj |hnj). As re-

ported in the original work and also confirmed by our own experiments, this

"coupled" inference leads to performance benefits.

7

Preprint version; final version available at http://www.sciencedirect.com/science/article/pii/S0031320316304010
Pattern Recognition (2017)
Published by: Elsevier
DOI: 10.1016/j.patcog.2016.12.014

http://www.sciencedirect.com/science/article/pii/S0031320316304010
https://doi.org/10.1016/j.patcog.2016.12.014


2. Proposed Approach

2.1. Motivation

Let us consider the case in which we have multiple sequences in our disposal,

but perhaps none of them are complete. Each sequence Y n ∈ RT×D consists of

multi-dimensional observations and we constrain them to be of fixed length T

and dimension D. The sequences may be of either the same or different tasks,

with the assumption that there is at least some redundancy to be harnessed

among them.

We envision a model able to take into account the sequential nature of the

data and the redundancies that manifest themselves among repetitions of a

single task as well as those across different tasks. This can be achieved by

supposing that our sequences are a linear superposition of a finite dictionary of

not necessarily linear basis functions, shared among all instances. Indeed, this

notion is frequently encountered in the literature for the purpose of modelling

both image [9, 20] and motion data [37].

In the past, researchers have considered imposing either spherical Gaussian

priors [18] or full GP priors [24] in the context of matrix completion and collab-

orative filtering with considerable success. Indeed, it has been well documented

that certain datasets, such as motion and sound, may lie in much lower di-

mensional manifolds than those they are presented in [38]. Nevertheless, the

assumption that this manifold coincides with the time component could be a

bit restrictive. In fact, it is quite possible that the optimal manifold is not

one dimensional and, even if it is, it might be represented by more complex

one-dimensional trajectories.

2.2. Main Contributions

In this work we aim to contribute both from a theoretical and experimental

perspective, by proposing a novel non-linear factor model and employing it for
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unsupervised time-series reconstruction. More specifically, we outline our main

contributions as follows:

GPLVM extension for unsupervised data completion.

As previously outlined, the GPLVM, although highly successful in a variety

of applications, has previous only been employed for data completion in a su-

pervised manner. In this work, we extend the model for unsupervised learning.

By doing so, we also obviate the need for a training set consisting of complete

sequences and enable ourselves to learn directly from incomplete data.

Our approach is analogous to the way the spike-and-slab GP (SS-GP) [24] ex-

tends the conventional Gaussian process. More specifically, similarly to the

SS-GP, which can be viewed as a factor model of GPs, our approach can be

viewed as a factor model of Gaussian Process Dynamical Systems, as will be

explained in more detail in the next section.

Reconstruction of time-series with non-uniform gaps. To the best of

the authors’ knowledge, it is the first time that matrix completion methods

have been employed for time-series with large contiguous missing segments.

Such methods usually thrive in image inpainting or signal interpolation, but are

rarely (if ever) used for completing big continuous gaps.

The scenario we target is a highly realistic one and, demonstrated in this

work, is directly applicable to automatically rectifying damaged motion capture

sequences.

2.3. Assuptions

Despite being designed to utilise and, in fact, benefit from jointly handling

multiple different tasks, our method implies certain assumptions about the prop-

erties those tasks should exhibit. We outline some of those properties as follows:
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Figure 1: Simplified plate diagram of the proposed model (Multi-GPDS), showing roughly
the dependence between variables. Note that yni,f ij ,φij ∈ RT×1 and Xj ∈ RT×Q, with Q
being the dimensionality of the latent covariate space.

Similarity. Different tasks should be selected so as not to be completely unre-

lated. This limitation is stemming from the fact that there is no factor sharing

across data dimensions, thus tasks should not use disjoint sets of joint positions.

In the unlikely event of completely unrelated tasks, the results are not expected

to be any worse than a single-task approach, but the method would incur an

unnecessarily high computational cost.

Timescale. Selected tasks should have similar time lengths, meaning that none

of them should have much shorter or longer completion time.

This limitation is stemming from the fact that we need to fix the length of all

sequences. In extreme circumstances, this preprocessing step could cause loss

of information or artefacts due to excessive down- or up-sampling respectively.

2.4. Model Formulation

2.4.1. Note on notation

Throughout the rest of this work, we attempt to consistently make use of

the following notation, so as to facilitate understanding of the model:
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• Indices:

– n: index of a single sequence (of joint locations in time).

– i: index of a single dimension in the data.

– t: index of a single point in time.

– j: index of a single latent (hidden) model factor.

– q: index of a single hidden covariate dimension.

• Dimensions:

– N : total number of sequences in the dataset.

– D: total number of data dimensions.

– T : length of motions sequence in time.

– Nh: total number of latent model factors.

– Q: total number of latent covariate dimensions.

• Random variables:

– yni: motion development for sequence n and dimension i; vector of

length T time-steps.

– wnj : loading weight of factor j in sequence n.

– f ij : latent factor j for dimension i; vector of length T time-steps.

– xtj : latent covariate governing factor j at time-step t; vector of length

Q dimensions.

As we have described in the previous section, the training set {Y n}Nn=1

consists of N sequences of D-dimensional data in time. Please note that we

have flattened with respect to the 3D data coordinates (x, y, z) and the skeleton

joints, so that D = 3× (number of joints).
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We postulate that each sequence can be represented by a dictionary of non-

linear basis factors f ij ∈ RT shared among all sequences as follows:

yni ∼ N

yni| Nh∑
j=1

wnjf ij , β
−1I

 (13)

We define the aggregate loadings matrix W ∈ RN×Nh , with [W ]nj , wnj on

which we impose a spherical Gaussian prior with column-wise sparsity as follows:

wj ∼ N (wj |0, γ−1j I) (14)

where as wj we denote the jth column of the loading matrix W .

As for the basis functions, we choose a Gaussian process dynamical system

(GPDS) prior distributions, one for each latent basis matrix and with a different

latent set of covariates Xj , {xtj}Tt=1, with xtj ∈ RQ. This choice was made

so as to achieve a rich non-linear structure.

f ij |φij ∼ N
(
f ij |φij , η−1j I

)
(15)

φij |Xj ∼ N
(
φij |0,K

(j)
XjXj

)
(16)

xqj |t ∼ N
(
xqj |0,K(j)

tt

)
(17)

Finally, we impose Gamma priors on the precision parameters {γj , ηj}Nh

j=1:

γj ∼ G
(
aγ ,

1

bγ

)
(18)

ηj ∼ G
(
aη,

1

bη

)
(19)

and a standard Jeffrey’s prior for the precision of the likelihood β: p(β) = β−1

A simplified plate diagram of the proposed model is presented in fig. 1.
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2.5. Variational Posterior Inference

2.5.1. Inducing Variables

Variational inference is, of course, intractable for this model due to the

non-linear relationship between Xj and φij in eq. 16. However, tractable

inference can be achieved by introducing the concept of “inducing variables” [33],

as shown in [34] for the conventional GPDS. This concept is directly applicable

to our case as well. More specifically, we can augment our original problem by

introducing M � T extra auxiliary sample points uij , drawn from the same

prior distribution as the original sample φij , but located on a different set of

latent locations, denoted as Zj :

uij ∼ N (0,K
(j)
ZjZj

) (20)

For notational simplicity and in order to explicitly indicate the dimensionality

of the corresponding kernel covariance matrices, we shall make the following

notational replacements:

• K(j)
XjXj

→KTT

• K(j)
Xj ,Zj

→KTM

• K(j)
Zj ,Zj

→KMM .

Note that we have also dropped the factor indices from the kernel matrices

{KTT ,KTM ,KMM} and will henceforth assume they refer to factor j although

not explicitly indicated.
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Given the inducing variables udj , our initial sample can be directly retrieved

as follows:

p(φij |uij ,Xj ,Zj) = N (φij |Bjuj ,Sj) (21)

Bj = KTMK
−1
MM (22)

Sj = KTT −KTMK
−1
MMKMT (23)

by doing so, we no longer need to impose an explicit posterior on the original

GP sample φij , but rather simply update it through the much smaller auxiliary

sample uij via Type-II maximum likelihood estimation.

2.5.2. Variational Factorisation

Given the introduction of inducing variables, the variational posterior for

our model is factorised as follows:

q(·) =

N∏
n=1

q(wn)

T∏
t=1

D∏
i=1

q(f ti)

·
D∏
i=1

Nh∏
j=1

p(φij |uij ,Xj)q(uij)

·
Nh∏
j=1

Q∏
q=1

q (xqj) q (γj) q (ηj) q (β) (24)

It should be noted that, inspired by [18], we have chosen a row-wise factorisation

for the loadingsW and factors F i, different from the column-wise factorisation

used in the prior. This is not an intuitive choice since we normally aim to cap-

ture dependancies among data-points in time (rows), rather than across factors

(columns) [26]. However, variational inference for the column-wise factorisation

yields diagonal posterior covariance matrices and fails to represent the intended

relationships, while a row-wise factorisation allows for a richer dependency struc-

ture and yield more accurate results.
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2.5.3. Variational Posterior Distributions

Factors and Loadings Posteriors.

Optimising the lower bound yields analytical updates for most of the random

variables in our model. We present our results in this section.

The posterior of the factor loadings wn is formulated as follows:

q(wn) = N
(
wn|µwn

,Σwn

)
(25)

Σwn = [Γ + V n]
−1 (26)

µwn
= Σwncn (27)

V n = 〈β〉
∑

(t,i)∈On

[
〈f ti〉 〈f ti〉

T
+ Σfti

]
(28)

cn = 〈β〉
∑

(t,i)∈On

ynit 〈f ti〉 (29)

with Γ = diag [〈γ〉].

As On we denote the set consisting of the dyads of indices (t, i), which are

observed in sequence Y n, the rest of them would be missing.

Note that V n is a full Nh × Nh, rather than diagonal, matrix and conse-

quently so is the posterior covariance Σwn
.

The posterior of the intermediate factor variables f ti can be formulated as

follows:

q(f ti) = N
(
f ti|µfti ,Σfti

)
(30)

Σfti = [H +Ln]
−1 (31)

µfti = Σfti [H 〈φti〉+ zn] (32)

Lti = 〈β〉
∑
n∈Oti

[
〈wn〉 〈wn〉T + Σwn

]
(33)

zti = 〈β〉
∑
n∈Oti

ynit 〈wn〉 (34)
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with H = diag [〈η〉].

Equivalently, as Oti we denote the set consisting of the indices of sequences

Y n for which the time-step t of dimension i is observed.

Gaussian Process Dynamical System Posteriors.

The posteriors of the GPDS variables are slightly more complicated to for-

mulate. As previously mentioned, we follow similar principles to [34] and [33]

in devising our own solution.

More specifically, we only need to formulate the posterior of the inducing

variables uij , through which we are able to retrieve a posterior estimate for the

φij ’s. Following that, we may then completely disregard the uij ’s.

Let us denote the following expectations of the various kernel matrices w.r.t.

the latent locations:

ψ0 = tr
{
〈KTT 〉q(Xj)

}
(35)

Ψ1 = 〈KTM 〉q(Xj)
(36)

Ψ2 = 〈KMTKTM 〉q(Xj)
(37)

As shown in [33], these expectations are tractable for certain kernel functions.

For notational simplicity we have dropped the factor index from quantities

{ψ0,Ψ1,Ψ2} and assume they all refer to factor j despite not explicitly in-

dicated.

Optimising the lower bound yields the following solution for the posterior of

the inducing variables:

q (uij) = N
(
uij |µuij

,Σuij

)
(38)

Σuij = KT
MMAjKMM (39)

µuij
= KT

MMAjΨ
T
1 µfij (40)
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Based on the posterior of uij , we obtain the mean of φij , as follows:

µφij
= 〈ηj〉Ψ1AjΨ

T
1 µfij (41)

with Aj = (KMM + 〈ηj〉Ψ2)
−1. Another quantity necessary for the rest of the

inference is the full posterior expectation of
〈
φTijφij

〉
, which is as follows:

〈
φTijφij

〉
= ψ0 − tr

{
K−1MMΨ2

}
+ tr {Ψ2Aj} (42)

+ 〈ηj〉2 µTfijΨ1A
T
j Ψ2AjΨ

T
1 µfij (43)

For the above result we have used eq. 21 as well as the following:

〈Bj〉 = Ψ1K
−1
MM (44)〈

BT
j Bj

〉
= K−TMMΨ2K

−1
MM (45)

tr {〈Sj〉} = ψ0 − tr
{
K−1MMΨ2

}
(46)

Precision Variables Posteriors.

The posterior expectations of the precision variables β, {γj}Nh
j=1 and {ηj}Nh

j=1

are given as follows:

〈β〉 =
#O∑

(n,t,i)∈O

〈
(ynit −wT

nf ti)
2
〉 (47)

where O is the set of triplets (n, t, i) of observed data and #O is the cardinality

of this set.

〈γj〉 =
2a+N

2b+
〈
wT
j wj

〉 (48)

and

〈ηj〉 =
2a+ TD

2b+
∑D
i=1

〈(
f ij − φij

)T (
f ij − φij

)〉 (49)
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The posterior expectations required for the above updates are given below:

〈
wT
j wj

〉
=

N∑
n=1

([
µwn

]2
j

+ [Σwn ]jj

)
(50)

〈
fTijf ij

〉
=

T∑
t=1

([
µfti

]2
j

+ [Σfti ]jj

)
(51)

2.5.4. Hyper-parameter Optimisation

The hyper-parameters that are optimised rather than inferenced are the ones

pertaining to the individual GPDS factors. In order to estimate them, we follow

closely the approach introduced in [34].

The optimisation itself involves Type-II maximum likelihood with respect

to:

1. The kernel hyper-parameters of latent kernel matrices KTT , KTM and

KMM .

2. The time kernel matrix Ktt.

3. The inducing locations Zj .

4. The parameters of the latent locations posterior distribution q(Xj) =

N (Xj |·).

As the posteriors q(Xj) are also Gaussian, we typically need to estimate means

and covariances, which involves O
(
T 2
)
number of parameters per factor. Due

to the high number of parameters this is both computationally intensive and

slow to converge. For that reason, the authors in [34] have reparametrised

the problem using a Gaussian approximation [7], involving O(T ) number of

parameters and as a result the approach scales much better with the number of

training data.

In brief, the parameters to be estimated by gradient ascent methods areΘj ={
θ
(x)
j ,θ

(t)
j ,Zj ,λj ,µXj

}
. The likelihood terms dependent on those parameters

can be computed by integrating out all other random variables analytically.
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To be more specific we begin by considering only the terms containing Θj

given in eq. 54. Then we compute the expectation w.r.t. f ij , yielding eq. 55.

Following that, we can integrate out the rest of the variables, which yields the

likelihood to be optimised in eq. 56. Finally, the Gaussian integral Iij is given

in eq. 57.

〈(
ynit −wT

nf ti
)2〉

=
(
ynit − 〈wn〉T 〈f ti〉

)2
+ (52)

+tr
{
µwn

µTwn
Σfti + Σwnµftiµ

T
fti + ΣwnΣfti

}
(53)

L(Θj) ∝
Ny∑
i=1

ˆ
q(Ωij)q(f ij) ln

N
(
f ij |φij , η−1j I

)
p(f ij ,uij ,Xj |t)

q(φij ,uij , Xj)
df ijdΩij (54)

=

Ny∑
i=1

ˆ
p(φij |·)q(Xj)q(uij) ln

N
(
µfij |φij , 〈ηj〉

−1
I
)
p(Xj)p(uij |Zj)

q(Xj)q(uij)
dΩij −

−〈ηj〉
2

∑
∀(t,i)

[Σfti ]jj (55)

=

Ny∑
i=1

ln Iij −
1

2
〈ηj〉

∑
∀(t,i)

[Σfti ]jj −
1

2
〈ηj〉ψ0 +

1

2
〈ηj〉 tr

{
K−1MMΨ2

}
−KL(q(Xj) ‖ p(Xj)) (56)

where, for brevity, Ωij =
{
φij ,uij ,Xj

}
.

Iij =

ˆ
e

〈
lnN

(
µfij
|Bjuij ,〈ηj〉−1I

)〉
N (uij |0,KMM )duij =

=
〈ηj〉

N
2 |KMM |

1
2

|KMM + 〈ηj〉Ψ2|
1
2

e
− 1

2µ
T
fij

[〈ηj〉I−〈ηj〉2Ψ1(KMM+〈ηj〉Ψ2)
−1ΨT

1 ]µfij(57)
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3. Empirical Evaluation

3.1. Experimental Setting

Table 1: Dataset details. Note that the motion capture sequences are provided in 3D join
position coordinates.

#Drawing 8s [39] #Dance Primitives [40] #HDM05 [41]
#Sequences 24 449 168
#Actions 1 6 8
#Repetitions 24 {57,83,84} {16,20,52}
#Timepoints 121 73 70
#Dimensions 4 23× 3 31× 3

3.1.1. Comparisons

For the purpose of empirically evaluating our approach we have compared

against popular models in the literature, some used as originally proposed and

others adapted to unsupervised sequence completion.

To be more specific, we aim at quantitatively assessing the efficacy of two

main aspects of our model:

• The imposition of GPDS priors for dictionary components

• The column-wise prior and row-wise posterior specification of the factor

loading weights (section 2.5.2)

For that purpose we compare against the following methods:

• Interpolation: The simplest way to conduct missing data reconstruction.

This method is aimed to serve as a baseline for all evaluated methods and

highlight the necessity of more sophisticated approaches under the current

setting. The particular interpolation method we have used follows the

spring metaphor2. It should also be noted, that interpolation is the only

2More specifically, we have made use of method 4 from the code published at http://uk.
mathworks.com/matlabcentral/fileexchange/4551-inpaint-nans.
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one of the methods that does not require fixed-length sequences. Despite

that, we have used the same exact data in order to yield comparable

results.

• SVT [42] and FPC [43]: The methods are dubbed singular value thresh-

olding (SVT) and fixed point completion (FPC). They are both non-

Bayesian and non-sequential models employing point-wise optimisation

for the purpose of matrix completion.

• SS-GP [24]: We briefly introduced this model in section 1.1.3. In order

to make it applicable to our multi-task scenario, we have adapted it to

the likelihood of eq. 13, but have kept the original prior specification,

variational factorisation and joint spike-and-slab posterior inference. The

adapted model specification is given in eq. 58-61.

The main factors distinguishing the multi-GPDS from the SS-GP, can be

summarised as follows:

– We use ARD, instead of spike-and-slab, priors. This is not expected

to introduce any performance benefits.

– We impose GPDS priors on the temporal factors f ij , instead of sim-

ple GPs. As previously discussed the GPDS prior offers one more

latent hierarchy level and higher expressive power.

– The variational posteriors of the factor loading matrix W are fully

factorised in the SS-GP:
∏
n

∏
j q(wnj). Inspired by [18], we have

chosen partially factorised posteriors:
∏
n q(wn). As mentioned be-

fore, this results in full (rather than diagonal) posterior covariance

matrices and captures richer dependencies, but also introduces higher

computational burden.
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wnj = ŵnjhnj (58)

ŵnj = N (wnj |0, γ−1j ) (59)

hnj = Bernoulli(πj) (60)

f ij ∼ GP(f ij |0,K(t, t)) (61)

• IBP-GP: A model otherwise identical to the SS-GP with the difference

that it assumes an Indian Buffet process prior (IBP) [44] on the factor

loadings to induce sparsity. We have not found an equivalent method in

the bibliography (using GP priors on the factors), however the extension

is straightforward. Note that we adopt the same principle to the SS-GP

during inference by using a coupled variational posterior, which resulted in

some performance gains. Due to the non-parametric IBP prior we expect

this method to perform better compared to its parametric counterpart

(SS-GP).

wnj = hnjŵnj (62)

hnj |u ∼ Bernoulli(πj(u)) (63)

πj(u) =

j∏
k=1

uk (64)

uk ∼ Beta(γ, 1) (65)

ŵnj ∼ N (ŵnj |0, γ−1j ) (66)

• VBMC [18]: Variational Bayesian Matrix Completion (VBMC) is a model

assuming spherical Gaussian priors for the purpose of general matrix com-

pletion. In order to use this method in our setting we have flattened the

time and joints dimensions. This model is able to capture richer depen-

dency structures by coupling factors and loadings, which is achieved by

factorising the prior row-wise and the posterior column-wise, leading to

22

Preprint version; final version available at http://www.sciencedirect.com/science/article/pii/S0031320316304010
Pattern Recognition (2017)
Published by: Elsevier
DOI: 10.1016/j.patcog.2016.12.014

http://www.sciencedirect.com/science/article/pii/S0031320316304010
https://doi.org/10.1016/j.patcog.2016.12.014


full, instead of diagonal, posterior covariance matrices. Note that although

this is not an explicitly sequential model, it implicitly models all depen-

dancies by means of a joint posterior distribution over time and joints.

We expect it to work well, but not better than the Multi-GPDS, due to

the fact that spherical Gaussian priors are generally less expressive that

GPDS priors.

• Multi-GP: A model otherwise the same as the Multi-GPDS with the

difference that it assumes GP, instead of GPDS priors, on the factors. We

have compared against this model in order to illustrate the benefits of

introducing a more complex GPDS prior on the factors.

• AR1: A model otherwise the same as the Multi-GPDS with the differ-

ence that it assumes an auto-regressive prior AR1 on the factors. We

also impose a joint Normal-Gamma prior on the mean and precision of

the autoregressive prior. This model has been chosen for comparison in

order to highlight the necessity of non-linear GPDS priors on the factor

components.

f1ij ∼ N
(
f1ij |µij , λ−1ij

)
(67)

ftij ∼ N
(
ftij |f(t−1)ij , λ−1ij

)
(68)

µij , λij ∼ N
(
µij |µ0, (β0λij)

−1
)
G
(
λij |a0,

1

b0

)
(69)

3.1.2. Data Removal Scheme

In this work we have utilised complete data sequences, whose details we pro-

vide in Table 1. From the complete sequences we remove consecutive segments

in a manner that is designed to be as realistic and challenging as possible. Our

sole purpose in using complete sequences is to have access to the corresponding

ground-truth necessary for quantitatively assessing the reconstruction accuracy.
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In the data removal scheme we aim at removing a variable random num-

ber of segments, of variable random length. More specifically, throughout our

experimental evaluation, we perform data removal according to the algorithm

outlined in the following paragraph.

Description of data removal algorithm.

Inputs:

– r ∈ R: Desired missing data ratio.

– λ ∈ N: Intensity of Poisson distribution for the number of missing data

segments.

– T ∈ N: Length of a single data sequence.

Outputs:

– q ∈ N: number of missing segments in the sequence.

– {mk}qk=1 ∈ N: vector containing the lengths of missing data segments.

– {sk}qk=1 ∈ N: vector containing the starting points of the missing data

segments.

Algorithm:

– Calculate the total number of data-points Nr to be removed from the

sequence according to the desired missing data ratio r:

Nr = rT , where T is the length of the sequence.

– Draw the number of missing segments q according to a truncated (strictly

positive) Poisson distribution with intensity λ:

p(q|λ) ∝ δ(q > 0)Poisson(λ)

This is possible by simply resampling in case of a zero draw (rejection

sampling).
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– Draw a vector ` of length q from a uniformly distribution:

` ∼ U([0, 1])

– Normalise ` so that it sums to one:
∑q
k=1 `k = 1.

`k now represents the proportion of Nr that will be removed.

– for k = 1 . . . q:

– Calculate the length mnk of the kth missing data segment of the

sequence, as follows:

mk = bNr`kc , where b·c is the ’floor’ operator.

– Estimate the length bk of a bounding box for the missing kth segment,

as follows:

bk = dT`ke , where d·e is the ’ceiling’ operator and both bk and mk

represent the same proportion of T and Nr respectively: bk
T = mk

Nr
=

`k.

– Draw a starting position sk, uniformly at random, within the bound-

ing box of length bk to place the kth missing segment within it:

sk ∼ U [0, bk −mk]

In order to guarantee the non-overlapping placement of all segments

we enforce the following constraint on the starting points: 0 ≤ sk <

bk −mk.

3.1.3. Data Processing

In order to ensure a realistic experimental scenario we conduct processing of

the sequences after the data removal.

All evaluated algorithms, except the interpolation, require sequences of the

same length, hence we fix the sequences to their average length by subsampling

the longer or linearly interpolating the shorter ones. Note that this process
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achieves an effect similar to speed normalisation, but does not align the se-

quences in time and does not account for different part of the sequence being

executed at different speeds.

Finally, prior to presenting the data to each algorithm, we have normalised

the incomplete sequences by removing their mean per dimension and scaling

according to their total standard deviation. The normalisation is performed

based only on the observed data-points.

3.1.4. Implementation and Setting

In our implementation we attempt to ensure consistency, impartiality and

reproducibility by following a number of principles as outlined below.

For the purpose of consistency, we have used the same GP library [27] and

the same kernel structure in time for all methods (details will follow).

In order to account for the influence of random initialisation, all presented

results are calculated by accumulating statistics over 30 independent repetitions,

with different random initialisations and random data removal per repetition. In

order to ensure impartiality, we seed the random number generators identically

across methods and use the same or completely analogous random initialisation

schemes.

For all experiments we present our results for missing data ratios ranging

from 50% to 80% with increments of 10%. With bold lettering we mark the

best statistically significant results, determined by applying the Student-t test.

We provide all hyper-parameters necessary for reproducing our experiments

below:

• λ: Poisson intensity, or else the expected number of missing data segments.

This parameter is set to λ = 2 for all experiments.

• Nh: Number of latent factors or initial rank for the VBMC, SVT and FPC
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methods. In the Robotic experiment, Nh = 32 for all methods except the

the Multi-GPDS for which Nh = 32. In the MoCap experiments we use

Nh = 64 for all methods.

• Q: Dimension of the GPDS latent covariate space X. We use Q = 2 for

the Robotic dataset and Q = 1 for the MoCap datasets.

• NGD: Maximum number of gradient descent iterations. This is applicable

for all gradient-based algorithms (SVT and FPC), whereNGD = 1000, and

those employing gradient descent for kernel hyper-parameter optimisation

(SS-GP, IBP-GP, Multi-GP and Multi-GPDS), where NGD = 10.

• Nfreq: Kernel update frequency. We update the kernel hyper-parameters

every Nfreq iterations in order to reduce computational costs. Nfreq = 10

in the Robotic experiment and Nfreq = 5 in the MoCap experiments.

• Kernel Functions: We have used a Square Exponential (SE) kernel for

Kxx and a composite Radial Basis Function + White noise + Bias term

for Ktt.

Note that in the case of the robotic experiment, we observed that the eval-

uated methods performed better when optimising the kernel parameters more

rarely, every 10 instead of every 5 VB iterations. Also, due to the relatively

simpler nature of the robotic data, less factors were sufficient and most meth-

ods achieved optimal performance for 32 factors, whereas the Multi-GPDS per-

formed best with 16 factors.

Finally, our results and source code necessary to reproduce all experiments

are available through the first author’s website http://www.korkinof.com and

the Personal Robotics Lab website http://www3.imperial.ac.uk/personalrobotics.
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Figure 2: Drawing lazy figure 8s: Upper left: End effector position on the experiment’s
drawing plane. Lower left: Angular velocities (rad/s) per joint. Right: Angular positions
(rad) per joint. (figure best viewed in colour)

3.2. Robotic Data

This dataset consists of joint angle positions of a NAO humanoid robot (aca-

demic edition) recorded while drawing lazy figure 8s. The dataset includes 24

distinct demonstrations presented to the NAO robot by means of kinesthetics3

and part of it has previously been used in [39] for online trajectory learning.

As can be seen in fig. 2, the dataset is noisy, each demonstration has different

points of origin and there is significant variation among demonstrations. The

task itself entails challenges for learning algorithms and for that reason is widely

considered a classical benchmark [38].

The results pertaining to this experiment are presented in Table 2. As may

be observed, the Multi-GPDS achieves overall the best reconstruction accuracy,

with the exception of the highest missing data ratio (80%) where its perfor-

mance is statistically equivalent to the AR1. In all other cases the Multi-GPDS

3Manual movement of the joints in the desired positions during the demonstration.
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Table 2: Drawing lazy figure 8s: Reconstruction root mean square error for all evaluated
methods. Each column represents results for a different missing data ratio. The scale of the
results is 10−2.

50% 60% 70% 80%
Interp. 5.85(0.24) 9.71(0.52) 11.1(0.63) 13.1(1.18)
SVT 4.24(0.55) 5.56(0.78) 7.86(1.26) 9.54(1.30)
FPC 4.29(0.55) 5.54(0.76) 7.80(1.24) 9.54(1.27)
SS-GP 2.73(0.24) 3.47(0.52) 4.79(0.63) 6.56(1.19)
IBP-GP 2.92(0.54) 3.73(0.79) 4.87(0.75) 5.79(0.81)
Multi-GP 2.66(0.30) 3.29(0.37) 4.07(0.42) 4.66(0.32)
VBMC 2.89(0.28) 3.71(0.37) 5.30(0.98) 7.05(0.90)
AR1 2.50(0.25) 3.00(0.31) 3.64(0.43) 4.24(0.31)
Multi-GPDS 2.20(0.24) 2.59(0.28) 3.32(0.49) 4.28(0.42)

Table 3: Dance Primitives Dataset: Reconstruction RMSE for all evaluated methods.
Column represents results for a different missing data ratios.

50% 60% 70% 80%
Interp. 2.75(0.20) 4.06(0.36) 5.63(0.32) 7.01(0.31)
SVT 2.17(0.05) 2.73(0.06) 3.58(0.08) 4.90(0.11)
FPC 1.45(0.05) 1.93(0.07) 2.72(0.08) 4.18(0.12)
SS-GP 1.10(0.03) 1.34(0.04) 1.71(0.06) 2.47(0.18)
IBP-GP 1.07(0.03) 1.30(0.04) 1.62(0.06) 2.30(0.19)
Multi-GP 1.08(0.03) 1.43(0.05) 1.99(0.06) 3.12(0.10)
VBMC 1.02(0.02) 1.27(0.04) 1.66(0.05) 2.50(0.07)
AR1 1.08(0.02) 1.38(0.04) 1.78(0.05) 2.34(0.07)
Multi-GPDS 1.00(0.02) 1.20(0.04) 1.47(0.05) 1.84(0.08)

outperforms AR1 10%-14%.

With regard to the rest of the evaluated algorithms, the Multi-GP performs

quite well in this experiment, followed by the SS-GP and the VBMC. The IBP-

GP underperforms for this dataset, as the number of factors selected appears

to be too low for the non-parametric prior. Finally, the SVT and FPC perform

almost identically and significantly better than interpolation, but worse that all

other methods.
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(a) LHRB (b) RHRB (c) LHE

(d) RHE (e) ATR (f) CTR

Figure 3: Dance primitives: Figures (a)-(f) show each separate action, which include the
following: (a): Left hand rotation (LHR), (b): Right hand rotation (RHR), (c): Left hand
extension (LHE) (d): Right hand extension (RHE) (e): Anti-clockwise torso rotation (ATR)
and (f): Clockwise torso rotation (CTR) (figures best seen in colour)

3.3. Motion Capture Data

3.3.1. Dance Primitives

This dataset consists of 6 human dance motion primitives and has previously

been used in learning dance sequences by means of context-free stochastic gram-

mars [45, 40]. The data is recorded as time-series using an OptiTrack 8-camera

motion capture system.

There are 449 sequences in total, belonging to 8 distinct actions with not
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