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Abstract
Purpose of Review To review research on deep learning models and their potential application within breast screening.
Recent Findings The greatest issue in breast screening is a workforce crisis across the UK, much of Europe and even Japan.
Traditional computer-aided detection (CAD) for mammography decision-support could not reach the level of an independent
reader. Deep learning (DL) outperforms CAD and is close to surpassing human performance. DL is already capable of decision
support and density assessment for 2D full-field digital mammography (FFDM), and is on the cusp of providing consistent,
accurate and interpretable mammography reading as an independent reader.
Summary A bold vision for the future of breast cancer screening is required if programmes are to maintain double reading
standards. DL provides the potential for single reading programmes, such as in the USA, to reach EU double reading accuracy, as
well as providing practical support for adoption of the emerging modality of digital breast tomosynthesis.
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Introduction

The greatest challenge-facing breast screening units is not that
of accuracy, it is that there is a global radiology workforce
crisis taking place against a backdrop of an exponential in-
crease in imaging volume. For instance, there are 80 Breast
Screening Units in England. The total number of women in-
vited in 2016/17 in England for breast screening rose by 3.7%
to 2.96 million. Of those, 2.2 million accepted the invitation
and were screened, and 18,402 cancers were detected [1]. A
recent UK workforce consensus demonstrated that 25% of
units have two or fewer breast radiologists. Furthermore, be-
tween now and 2022, for every two breast radiologists that
join the NHS, three are predicted to leave [2•]. However, the
UK is not alone. Japan, for instance, has the lowest proportion
of radiologists per population in the G7, and it is estimated that

an increase of staff by a factor of 2.5 is required in order to
meet international standards [3]. Many other countries are also
struggling to recruit and retain the required staff to run screen-
ing programmes effectively.

Currently in the EU, every mammogram is ‘double-read’
by two independent readers. However, many screening cen-
tres struggle to fulfil double reading requirements in a timely
manner. Additionally, there is wide variation in recall rates
between different centres. In the USA, where screening is
not invitational and only single read, the accuracy of
screening is lower, with significantly higher recall rates
than double reading programmes [4]. Blinded double read-
ing reportedly reduces false negative results and the aver-
age radiologist can expect an 8–14% gain in sensitivity
with double reading pairing [5]. Double reading has un-
doubtedly improved accuracy, but at the cost of increasing
human resource requirements.

Current Solutions—Computer-Aided
Detection Systems

After the advent of full-field digital mammography (FFDM) at
the turn of the millennium, medical imaging data became
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available in a format amenable to computational analysis. The
huge volume of screening cases coupled with advances in
computing (both from a hardware and software perspective)
meant that attempts at automated diagnosis were inevitable.
These early systems are known as CAD (computer-aided de-
tection), of which iCAD Secondlook, and ImageChecker (by
R2/Hologic) are the most widely known. As these products
have been around for several years, there is a rich body of
research, both positive and negative, into how effective they
are, and whether they impact positively on patient outcomes
[6–10, 11••].

The studies were conducted with different methodologies,
sample sizes, population cross sections and outcome metrics.
While a one-to-one comparison is difficult, a number of key
trends are easy to identify. Firstly, there is a significant level of
variance between the conclusions regarding whether the tech-
nology is effective. This ambiguity has meant a low, or even
lack of CAD adoption in Europe, and decreasing confidence is
also illustrated by fewer and fewer US hospitals utilising it
(especially since reimbursement incentives have decreased
in recent years).

CAD systems also fall outside the realm of blinded double
reading by their very positioning within the radiologists’
workflow. They were designed to overlay regions of interest
(ROIs) and present them directly to the reading radiologist, in
effect giving them more information to interpret, and poten-
tially biasing their decision. The outputs from these CAD
systems could not be separated from the radiologist’s indepen-
dent review of the images as any final decision was made in
conjunction with the CAD outputs, rather than independently
from them. The overall consensus is that these systems output
a large number of false-positive marks on each case, which
can increase reading times [12•]. Any of these false positives
triggering a recall will have a significant impact on down-
stream healthcare costs and patient welfare. For example,
Elmore et al. [13] demonstrated that for every $100 spent on
screening with CAD, an additional $33 was spent to evaluate
unnecessary false-positive results. More importantly, there
was a significant increase in the number of women undergo-
ing undue stress and emotional worry as they feared for the
worst. In a seminal prospective UK trial (CADET II) [14],
although CAD was shown to aid single reader detection of
cancer, there was a 15% relative increase in recall rates be-
tween human/CAD combination and standard double reading
by two humans.

The high proportion of false-positive marks given by these
early non-deep learning systems rendered them ineffective as
a truly independent reader as they were not able to provide
meaningful case-wise recall suggestions; hence, the only via-
ble output option was providing ROI outlines.

The flaws with traditional CADs stem from the underlying
technology used. Traditional machine learning techniques are
often referred to as ‘expert systems’. In this case, the breast

radiologist is the expert who develops hand-crafted features
and low-level pattern libraries in conjunction with an engi-
neer, usually based on heuristics and pixel-distributions, that
can correctly learn to classify objects in images. These are
then written into code. In mammography, to achieve an opti-
mal CAD tool, this requires a set of features capable of cor-
rectly detecting the diverse range of abnormalities that arise
biologically in the breast. This is a demanding task, as
microcalcifications are completely different in shape, texture
and size to masses, while the morphology of architectural
distortions is even more subtle. It is intuitive and reasonable
to assume that the standard low-level feature sets used histor-
ically would always be unable to capture the entirety of mean-
ingful information contained in mammograms.

The Promise of Deep Learning

Deep learning has already revolutionisedmany image analysis
tasks. In 2012, the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC), which challenges entrants to build sys-
tems to correctly classify the contents of an image (with 1000
possible classes), was won by AlexNet [15••], a deep
Convolutional Neural Network (CNN). It reduced error rates
from (a then state of the art) 25.7 to 17.0%. This ushered in a
paradigm shift for object recognition, with traditional machine
learning techniques being universally replaced by deep learn-
ing (DL)-based systems over the following years. In 2017, the
final year of the ImageNet challenge, 29 of the 38 teams com-
peting were able to achieve errors below 5.0%, thanks to ad-
vances in deep learning (the current state of the art is 2.25%).
This rise was facilitated by ever increasing amounts of digital
data (as these CNNs require large numbers of images to train),
and technological advances in graphical processing units
(GPUs), the hardware which allows these models to be trained
quickly.

The success of these models comes down to their flexibil-
ity. From a radiologist’s perspective, an expert practitioner no
longer needs to spend the majority of her/his time developing
hand-engineered features that capture specific lesion charac-
teristics; instead, the CNN is capable of learning the relevant
features intuitively from large image datasets and their overall
lesion labels. This flexibility comes at the cost of requiring
larger datasets and significant computing power.

There has been an increase in research proposing the use of
DL for mammography over the past few years, largely divided
into two approaches: patch-based and case-wise (whole
image).

Patch-based approaches break an image down into smaller
regions for analysis, rather than taking an entire image as an
input, as CNNs traditionally were developed to accommodate
square input image sizes between 250 and 300 pixels in width
and are not suitable out-of-the-box for mammography given
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the large size of images. These systems have traditionally been
used to aid in localisation of lesions within an image.
However, local decision-based approaches have a number of
significant problems. The most notable is that when the many
small decisions are re-combined back into the full image, the
result is typically a large number of false positives or overall
drop of performance in line with the increased complexity of
the task.

Dhungeet et al. [16] and Ertosunet et al. [17] can be
accredited with starting off the new wave of deep learning
with hybrid approaches, combining traditional machine
learning with deep learning. The former suggested a cas-
caded CNN-based approach followed by a random forest
and classical image post-processing. The latter published a
two-stage deep learning system where the first classifies
whether the image contains a mass, and the second local-
ises these masses.

In 2016, the DREAM challenge was set up, inviting ma-
chine learning researchers to develop systems to detect breast
cancers on a proprietary dataset for a monetary grand prize
[18]. This was the first public competition to highlight DL
superiority in a mammography screening setting. The input
data consisted of around 640,000 images of both breasts and,
if available, previous screening exams of the same subject,
clinical/demographic information such as race, age and family
history of breast cancer. The winning team (Therapixel,
France) attained a specificity of 80.8% at a set sensitivity of
80% (AUC 0.87) [19•] with their DL system. Ribli et al. came
second in the challenge with their DL system capable of not
only classifying malignancy, but also outlining the regions in
an image which supported this decision [20].

Carneiro et al. achieved an area under the receiver operator
curve (ROC) of 0.9 for malignancy classification on the pub-
licly available DDSM [21] and inBreast datasets [22]. Their
model was pre-trained on ImageNet (a tactic regularly
employed by practitioners) and yielded significant improve-
ments in mass and microcalcification detection. In 2017, Teare
et al. [23] proposed a DL system that achieved a malignancy
specificity of 80% at a sensitivity of 91% on DDSM, and their
own proprietary dataset (which contained an equal number of
malignant and non-malignant cases). Geras et al. developed a
DL system capable of classifying screening cases into BI-
RADS 0, 1 or 2 [24]. However, the inability to identify ma-
lignant lesions limits its ability to perform as an independent
reader. Finally, Kim et al. developed a system which made a
malignancy prediction on an entire mammography case (all 4
views) [25]. The model was trained on malignant (biopsy
proven) and normal (with at least 2 years of negative follow-
up) cases from multiple hardware vendors. They achieved a
sensitivity of 75.6% at a specificity of 90.2% (with an overall
AUC of 0.903). More recently, Rodriguez-Ruiz et al. [26]
demonstrated that a DL system (Transpara™, Screenpoint
Medical, Nijmegen, the Netherlands) could increase the

accuracy of radiologists using CAD-style displays of a likeli-
hood of malignancy given a user-selected area.

While all of this research was conducted on various differ-
ent datasets, with a variety of different outcome metrics, none
of the above cited works (including the winners of the
DREAM challenge) reached close to the performance of sin-
gle human reading radiologists as a standalone system [27••,
28, 29]. Nevertheless, the progress over the last few years
highlights how DL technology is moving beyond the past
performance of traditional CAD systems, and closer to the
goal of an independent reader.

Breast density assessment is another area of research inter-
est for the deep learning community. In the USA in particular,
where density assessments are mandated in several states, DL
systems can provide an automated BI-RADS density category.
Such a system has already been implemented in clinical prac-
tice at Massachusetts General Hospital [30].

Despite the data and computational resource requirements
of DL, it has the potential to drive a revolution in medical
image analysis, improving accuracy due to improved false-
positive and false-negative rates, increasing consistency and
speed, automating analyses and speeding up assessment time.
All of these elements provide useful practical support for
screening programmes and services. The ultimate goal is to
detect malignancies at a level that undoubtedly supports radi-
ologists and breast units, which is at or beyond the level of an
experienced single reader’s average performance. However,
current available mammography datasets are largely unrepre-
sentative of the range of true screening cases in clinical prac-
tice [31•], so further work is required in order to provide de-
velopers with the necessary data to train and validate clinically
applicable models.

Generative Adversarial Networks (GANS) are a promising
type of machine learning that can be used to synthesise med-
ical images using features learnt from the latent space of a real
dataset. Our group recently published a pre-print describing
our success at creating high-resolution mammograms using
GANs [Fig. 1, 32], and postulated that there may be potential
for synthetic data to help augment sparse training datasets and
assist in domain transfer tasks.

Independent Reading

To truly make a positive impact in breast cancer screening, the
largest pain point must be addressed urgently—that of a radi-
ologist workforce in crisis. In order to achieve this ambitious
goal, an automated system is needed that is able to make the
same decision that a consultant radiologist makes when
reviewing mammogram cases, with at least the same accuracy
and consistency. This decision is a binary one—to callback a
woman for further investigations or not—which case-wise
deep learning systems are now able to achieve. We developed
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a DL system, known as Mia (Mammography Intelligent
Assessment), trained on over 1 million real-world screening
mammography images gathered to explicitly achieve this
goal, and are the first group to receive regulatory approval
for a deep learning system to act as a second (or third) reader
that provides case-wise callback decisions. Our initial retro-
spective evaluation of this system (under consideration for
peer reviewed publication at the time of writing) on an unseen
validation set of a screening cohort of 3860 patients (with
outcomes proven by biopsy or at least 3 years negative
follow-up) indicated that it compares favourably to
established performance benchmarks for modern screening
digital mammography [27••], the criteria for identifying radi-
ologists with acceptable screening mammography interpretive
performance [28], and the minimally acceptable interpretive
performance criteria for screening mammography [29].
Further studies will of course be needed to make direct com-
parisons with radiologists in a real-world setting.

The current European standard of double reading followed
by arbitration, either via a third experienced radiologist or
multi-disciplinary team, could be feasibly maintained by com-
bining human and software decision-making while ensuring
true blinding between readers. Just as there is arbitration now
when two radiologists disagree on a callback decision, the
same process could be applied when a human and machine
disagree, and only then would the system’s interpretation of
the case be queried. In this manner, radiologists would be
entirely uninterrupted to assess cases to the best of their train-
ing and expertise, reducing any potential for bias introduced
from CAD outputs. Furthermore, an independent DL reader
does not provide any extra distractions, or require additional
clicks within the radiologist’s workflow.

Gaining radiologist’s acceptance that an automated inde-
pendent reader is performing an analysis at or above human
performance, which can be checked if necessary, will be an

important step that has to be a high-priority focus area of work
in the field. Indeed, there are already non-radiologist staff
taking on the role of an independent reader, with many sites
across the UK training and employing consultant
mammographers in order to bolster their workforce [33], as
such, there is already a move, driven by necessity, towards
non-radiologist interpretation of images.

Some may argue that effectively replacing one of two
humans within a clinical setting will alter the training of breast
radiologists and also affect their required reporting numbers to
maintain their qualifications. According toWoodard et al. [34]
radiologists become more specific in their assessment of
mammograms over their careers, but less sensitive. A system
that performs as well as experienced radiologists from day
one, with consistency, would help mitigate against this
recognised learning curve and has the potential to help in the
training of the future workforce, all the while ensuring patient
care is maintained, or even improved.

To incorporate an independent DL reader within double
reading programmes would not require significant re-
organisation of how these programmes are run. A system that
integrates with current reporting methodologies into a
workflow with arbitration is in theory relatively simple to
deploy. However, in the USA, and other single reading na-
tions, double reading workflows are not the norm, and there-
fore the infrastructure of double reading would need to be
created, enabling the benefits of European double reading
standards to be applied to these single reading programmes.

Tomosynthesis

While 2-dimensional FFDM is the current standard for breast
cancer screening, increasing amounts of research into 3-
dimensional digital breast tomosynthesis (DBT) is gaining

Fig. 1 Progressive generation of
synthetic mammograms from low
to high pixel resolution.
Reproduced from [32]
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traction. Even though DBT has the potential to further in-
crease the accuracy of cancer detection, it comes at the cost
of requiring more time to interpret, given the large amount of
images produced, and a slight increase in radiation dose [35].
Mostly for these reasons, DBT has not yet seen widespread
adoption for population screening where there are large vol-
umes of cases, and instead is mainly used for symptomatic or
difficult cases, such as dense breasts [36]. In an attempt to
mitigate against the additional time-cost of interpreting these
cases, vendors offer 2D synthetic images created from 3D
tomosynthesis datasets. Machine learning techniques have
been successfully applied to these synthetic images, providing
an increase in radiologist accuracy for those that used CAD-
enhanced synthetic mammogramswhen compared to standard
2D FFDM alone [37].

Due to the increased number of image slices in DBT, the
labelling requirements are significantly increased, and large
enough training and validation DBT datasets for deep learning
on screening populations are not yet available. However, ma-
chine learning techniques such as domain transfer mean that
DL systems trained on 2D mammograms are poised to be
applied to DBT. This is achieved by leveraging the useful
transferable features from a model trained for 2D mammog-
raphy, so that a tomosynthesis model does not need to be
redeveloped completely from scratch. Nevertheless, as DBT
and DL use increases in practice, it is inevitable that indepen-
dent DL systems will start to be used within this modality also.

Conclusions

Traditional machine learning approaches are sufficient to pro-
vide simple decision-support such as malignancy detection
and density assessment, but deep learning has the potential
to shift the paradigm from simple CAD clinical-decision sup-
port to being a truly independent reader. This could enable
single reading programmes to achieve the low recall rates
and accuracy of double read programmes. By incorporating
human-level, or superior, automated mammography and
tomosynthesis analysis into an arbitrated workflow, the work-
force crisis in breast screening could be somewhat mitigated.
Reaching this goal will require close collaboration between
data scientists and clinicians, with consideration towards the
requirements of large-scale data sharing and computational
resource costs, as well as integration within current practice.

Compliance with Ethical Standards

Conflict of Interest Hugh Harvey, Edith Karpati, Galvin Khara,
Dimitrios Korkinof, Annie Ng, Christopher Austin, Tobias Rijken and
Peter Kecskemethy are employees of Kheiron Medical Technologies. No
payment or incentive is disclosed for the writing of this review article.

Human and Animal Rights and Informed Consent This article does not
contain any studies with human or animal subjects performed by any of
the authors.

Open Access This article is distributed under the terms of the Creative
Commons At t r ibut ion 4 .0 In te rna t ional License (h t tp : / /
creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided you give appro-
priate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

References

Papers of particular interest, published recently, have been
highlighted as:
• Of importance
•• Of major importance

1. Breast Screening Programme, England - 2016-17 [PAS] https://
digital.nhs.uk/data-and-information/publications/statistical/breast-
screening-programme/breast-screening-programme-england%
2D%2D-2016-17 - accessed October 2018.

2.• Royal College of Radiologists. The breast imaging and diagnostic
workforce in the United Kingdom. Reference: BFCR(16)2. 2016.
The workforce crisis in the UK threatens to destabilise the
breast screening programme.

3. Nakajima Y, Yamada K, Imamura K, Kobayashi K. Radiologist
supply and workload: international comparison–Working Group
of Japanese College of Radiology. Radiat Med. 2008;26:455–65.
https://doi.org/10.1007/s11604-008-0259-2.

4. Beam CA, et al. Effect of Human Variability on Independent
Double Reading in Screening Mammography. Academic
Radiology. 1996;3(11):891–7. https://doi.org/10.1016/s1076-
6332(96)80296-0.

5. Domingo L, et al. Cross-national comparison of screening mam-
mography accuracy measures in U.S., Norway, and Spain.
European Radiology. 2016;26(8):2520–8.

6. Philpotts LE. Can computer-aided detection be detrimental tomam-
mographic interpretation? Radiology. 2009;253(1):17–22.

7. Gilbert FJ, et al. Single reading with computer-aided detection for
screening mammography. New England Journal of Medicine.
2008;359(16):1675–84.

8. Taylor P, Potts HWW. Computer aids and human second reading as
interventions in screening mammography: two systematic reviews
to compare effects on cancer detection and recall rate. European
Journal of Cancer. 2008;44(6):798–807.

9. Karssemeijer N, et al. Breast cancer screening results 5 years after
introduction of digital mammography in a population-based screen-
ing program. Radiology. 2009;253(2):353–8.

10. Bargalló X, et al. Single reading with computer-aided detection
performed by selected radiologists in a breast cancer screening pro-
gram. European Journal of Radiology. 2014;83(11):2019–23.

11.•• Lehman CD, et al. Diagnostic accuracy of digital screening mam-
mography with and without computer-aided detection. JAMA
Internal Medicine. 2015;175(11):1828. This is perhaps the most
seminal study of traditional CAD in practice and concluded
that CAD did not provide the promised improvement in diag-
nostic accuracy.

Curr Breast Cancer Rep

https://digital.nhs.uk/data-and-information/publications/statistical/breast-screening-programme/breast-screening-programme-england%2D%2D-2016-17
https://digital.nhs.uk/data-and-information/publications/statistical/breast-screening-programme/breast-screening-programme-england%2D%2D-2016-17
https://digital.nhs.uk/data-and-information/publications/statistical/breast-screening-programme/breast-screening-programme-england%2D%2D-2016-17
https://digital.nhs.uk/data-and-information/publications/statistical/breast-screening-programme/breast-screening-programme-england%2D%2D-2016-17
https://doi.org/10.1007/s11604-008-0259-2
https://doi.org/10.1016/s1076-6332(96)80296-0
https://doi.org/10.1016/s1076-6332(96)80296-0


12.• Kohli A, Jha S. Why CAD failed in mammography. Journal of the
American College of Radiology. 2018;15(3 Pt B):535–7.An excel-
lent overview of the failures of traditional CAD systems and
radiologists’ perceptions of them.

13. Elmore JG, et al. Ten-year risk of false positive screening mammo-
grams and clinical breast examinations. New England Journal of
Medicine. 1998;338(16):1089–96. https://doi.org/10.1056/
nejm199804163381601.

14. Gilbert FJ, et al. CADET II: a prospective trial of computer-aided
detection (CAD) in the UK Breast Screening Programme. Journal
of Clinical Oncology. 2008;26(15_suppl):508.

15.•• Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification
with deep convolutional neural networks. Communications of the
ACM. 2017;60(6): 84–90. https://doi.org/10.1145/3065386. The
breakthrough in deep learning image analysis that led to it’s
recent resurgence is described in this paper.

16. Dhungel N, Carneiro G, Bradley AP. Automated mass detection
from mammograms using deep learning and random
Forest.International Conference on Digital Image Computing:
Techniques and Applications, pages 1–8, 2015.

17. Ertosun MG, Rubin DL. Probabilistic visual search for masses
within mammography images using deep learning.IEEE
International Conference on Bioinformatics and Biomedicine,
pages 1310–1315, 2015.

18. Sage Bionetworks. The digital mammography DREAM challenge.
2016.

19.• DREAM Challenge results. https://www.synapse.org/#!Synapse:
syn4224222/wiki/401763 - accessed November 2018. This was
the first public challenge to develop machine learning algo-
rithms for breast cancer detection.

20. Ribli D, Horváth A, Unger Z, Pollner P, Csabai I. Detecting and
classifying lesions in mammograms with Deep Learning. Scientific
Reports. 2018;8(1):4165.

21. Clark K, et al. The cancer imaging archive (TCIA): maintaining and
operating a public information repository. Journal of Digital
Imaging. 2013;26(6):1045–57.

22. Moreira IC, et al. INbreast: toward a full-field digital mammograph-
ic database. Academic Radiology. 2012;19(2):236–48.

23. Teare P, et al. Malignancy detection on mammography using dual
deep convolutional neural networks and genetically discovered
false color input enhancement. Journal of Digital Imaging.
2017;30(4):499–505. https://doi.org/10.1007/s10278-017-9993-2.

24. Geras K-J, Wolfson S, Shen Y, et al. High-resolution breast cancer
screening with multi-view deep. Convolutional Neural Networks.
2017;arXiv:1703.07047.

25. Kim E-K, et al. “Applying data-driven imaging biomarker in mam-
mography for breast cancer screening: preliminary study.”
Scientific Reports, 2018;8(1). https://doi.org/10.1038/s41598-018-
21215-1.

26. Rodriguez-Ruiz A, et al. “Can radiologists improve their breast
cancer detection in mammography when using a deep learning
based computer system as decision support?” 14th International
Workshop on Breast Imaging (IWBI 2018). 2018. https://doi.org/
10.1117/12.2317937.

27.•• Lehman CD, et al. National Performance Benchmarks for Modern
Screening Digital Mammography: Update from the Breast Cancer
Surveillance Consortium. Radiology. 283(1):49–58. https://doi.org/
10.1148/radiol.2016161174.A landmark study in the assessment
of US breast screening performance.

28. Miglioretti DL, et al. Criteria for identifying radiologists with ac-
ceptable screening mammography interpretive performance on ba-
sis of multiple performance measures. American Journal of
Roentgenology. 2015;204(4):W486–91.

29. Carney PA, Sickles EA,Monsees BS, Bassett LW, Brenner RJ, Feig
SA, et al. Identifying minimally acceptable interpretive perfor-
mance criteria for screening mammography. Radiology.
2010;255(2):354–61. https://doi.org/10.1148/radiol.10091636.

30. Lehman CD, Yala A, Schuster T, Dontchos B, Bahl M, Swanson K,
et al. Mammographic breast density assessment using deep learn-
ing: clinical implementation. Radiology. 2018;290:180694–58.
https://doi.org/10.1148/radiol.2018180694.

31.• Wang, Xiaoqin, et al. “Transfer deep learning mammography diag-
nostic model from public datasets to clinical practice: a comparison
of model performance and mammography datasets.” 14th
International Workshop on Breast Imaging (IWBI 2018). 2018,
https://doi.org/10.1117/12.2317411. Deep learning techniques
are not as generalisable as researchers initially thought, and
this study proves that algorithmic modelling incorporates
features from datasets that include biases that developers may
not be aware of.

32. Korkinof D et al. High-resolution mammogram synthesis using
progressive generative adversarial networks. eprint 2018;arXiv:
1807.03401.

33. Culpan AM. Radiographer involvement in mammography image
interpretation: a survey of United Kingdom practice. Radiography.
22(4):2016, 306–312. https://doi.org/10.1016/j.radi.2016.03.004.

34. Woodard DB, Gelfand AE, Barlow WE, Elmore JG. Performance
assessment for radiologists interpreting screening mammography.
Stat Med. 2007;26(7):1532–51. https://doi.org/10.1002/sim.2633.

35. Gennaro G, Bernardi D, Houssami N. Radiation dose with digital
breast tomosynthesis compared to digital mammography: per-view
analysis. European Radiology. 2018;28(2):573–81.

36. Vedantham S, Karellas A, Vijayaraghavan GR, Kopans DB. Digital
breast tomosynthesis: state of the art. Radiology. 2015;277(3):663–
84.

37. James JJ, et al. Evaluation of a computer-aided detection (CAD)-
enhanced 2D synthetic mammogram: comparison with standard
synthetic 2D mammograms and conventional 2D digital mammog-
raphy. Clinical Radiology. 2018;73(10):886–92.

Curr Breast Cancer Rep

https://doi.org/10.1056/nejm199804163381601
https://doi.org/10.1056/nejm199804163381601
https://doi.org/10.1145/3065386
https://www.synapse.org/#!Synapse:syn4224222/wiki/401763
https://www.synapse.org/#!Synapse:syn4224222/wiki/401763
https://doi.org/10.1007/s10278-017-9993-2
https://doi.org/10.1038/s41598-018-21215-1
https://doi.org/10.1038/s41598-018-21215-1
https://doi.org/10.1117/12.2317937
https://doi.org/10.1117/12.2317937
https://doi.org/10.1148/radiol.2016161174
https://doi.org/10.1148/radiol.2016161174
https://doi.org/10.1148/radiol.10091636
https://doi.org/10.1148/radiol.2018180694
https://doi.org/10.1145/3065386
https://doi.org/10.1016/j.radi.2016.03.004
https://doi.org/10.1002/sim.2633

	The Role of Deep Learning in Breast Screening
	Abstract
	Abstract
	Abstract
	Abstract
	Introduction
	Current Solutions—Computer-Aided Detection Systems
	The Promise of Deep Learning
	Independent Reading
	Tomosynthesis
	Conclusions
	References
	Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance



