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The framework for training generative models in an ad-
versarial manner was introduced in the work of Good-

fellow et al (1) in 2014 (Fig 1). It is based on a simple but 
powerful idea: a generator neural network aims to produce 
realistic examples able to deceive a discriminator network, 
which aims to discern between real and synthetic ones (a 
“critic”) (Fig 1). The process is unstable and susceptible to 
collapse, especially for higher pixel resolutions.

Assessment of the quality of the synthetic images 
is also notoriously difficult. Several evaluation metrics 
have been proposed in the literature, such as the in-
ception score, the Fréchet inception distance, and the 
sliced Wasserstein distance (2) (Appendix E1 [supple-
ment]). However, they are mainly useful when com-
paring different synthesis methods and cannot provide 
an objective measure of image realism.

The generation of synthetic medical images is of 
increasing interest to both the medical and machine 
learning communities for several reasons. First, syn-
thetic images can potentially be used to improve meth-
ods for downstream tasks by means of data augmenta-
tion (3,4). Second, image-to-image translation can be 
used for domain adaptation (5), image enhancement 
(6), and superresolution (7).

The main purpose of our work is to investigate whether 
recent advances in generative adversarial networks (GANs) 
can enable synthesis of realistic medical images indiscern-
ible from real ones, even by domain experts.

The generation of realistic images is important 
to establish whether such methods can be useful in 
fields like full-field digital mammography, in which 
images need to be processed at relatively high reso-
lutions because of fine structural details of high di-
agnostic importance, such as lesion spiculation and 
microcalcifications.

To assess the quality of the generated images, we 
propose a systematic assessment of distributional 
alignment for ultra–high-dimensional pixel distribu-
tions and show that our method can reveal areas of 
alignment and potential misalignment. Finally, we 
present a reader study assessing the perceived real-
ism of synthetic medical images from a human-expert 
perspective.

It is beyond the scope of this work to address whether 
and how synthetically generated images can be used for 
clinically significant purposes. In fact, this is a difficult 
question that has yet to be convincingly addressed in the 
literature for either natural or medical images.
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Purpose: To explore whether generative adversarial networks (GANs) can enable synthesis of realistic medical images that are indiscern-
ible from real images, even by domain experts.

Materials and Methods: In this retrospective study, progressive growing GANs were used to synthesize mammograms at a resolution of 
1280 3 1024 pixels by using images from 90 000 patients (average age, 56 years 6 9) collected between 2009 and 2019. To evaluate 
the results, a method to assess distributional alignment for ultra–high-dimensional pixel distributions was used, which was based on 
moment plots. This method was able to reveal potential sources of misalignment. A total of 117 volunteer participants (55 radiologists 
and 62 nonradiologists) took part in a study to assess the realism of synthetic images from GANs.

Results: A quantitative evaluation of distributional alignment shows 60%–78% mutual-information score between the real and syn-
thetic image distributions, and 80%–91% overlap in their support, which are strong indications against mode collapse. It also reveals 
shape misalignment as the main difference between the two distributions. Obvious artifacts were found by an untrained observer in 
13.6% and 6.4% of the synthetic mediolateral oblique and craniocaudal images, respectively. A reader study demonstrated that real 
and synthetic images are perceptually inseparable by the majority of participants, even by trained breast radiologists. Only one out of 
the 117 participants was able to reliably distinguish real from synthetic images, and this study discusses the cues they used to do so.

Conclusion: On the basis of these findings, it appears possible to generate realistic synthetic full-field digital mammograms by using a 
progressive GAN architecture up to a resolution of 1280 3 1024 pixels.

Supplemental material is available for this article.
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We applied the default windowing level for the hardware, 
which was followed by aspect ratio–preserving image resizing to 
normalize the dataset resolution to 1280 3 1024 pixels, our tar-
get resolution for synthesis. Ideally, images should be processed 
at their full resolution by deep learning algorithms. However, 
because of the current hardware limitations, this would have re-
sulted in a small batch size during training, which can substan-
tially degrade performance. We have observed that resolutions 
up to 1280 3 1024 pixels are sufficient for most applications.

Progressive Training of GANs
In our study, we used progressive training for scaling GANs to 
higher resolutions. According to this concept, training starts at 
a low resolution, at which the dimensionality of the problem 
is low, before gradually increasing it as more layers are phased 
in, which increases the capacity of the network (Fig 2). For a 
background primer on GANs and details regarding how train-
ing was conducted, refer to Appendix E2 (supplement).

Assessing Distributional Alignment
It is difficult to estimate the alignment of ultra–high-dimen-
sional pixel distribution. All available metrics outlined in Ap-
pendix E1 (supplement) are mainly focused on comparing 
synthesis methods rather than on measuring the alignment in 
absolute terms.

For that reason, we propose the use of the first five statistical 
moments to directly assess the similarity between low-level pixel 
distributions of real and synthetic images. We show that the pixel 
moments can be used to effectively reduce the dimensionality of 
the problem for both visualizing these high-dimensional distri-
butions and quantitatively assessing their alignment by means of 
mutual information.

Scatterplots of the first five centered statistical moments, 
namely the mean, variance, skewness, kurtosis, and hyperskew-
ness, are shown in Figure 3.

For the five aforementioned moments, we examine both 
the mutual information between all possible combinations of 
moment pairs and the mutual information between moments 
and the real and/or synthetic label, indicating how discrimi-
native each moment is for distinguishing between real and 
synthetic images. Lower values indicate the difficulty of sepa-
rating the images on the basis of each moment and therefore 
indicate better overlap.

Materials and Methods

Data and Clinical Setting
In our retrospective study (undertaken 2009–2017), we 
used our large proprietary full-field digital mammogram 
dataset (.1 000 000 images; 90 000 patients; mean age,  
56 years 6 9 [standard deviation]). The data were fully ano-
nymized according to data-protection law, and further eth-
ics approval was not required for this experimental work. To 
ensure synthesis of physiologic breast tissue, we deliberately 
excluded images from this set that contained postoperative 
artifacts (eg, metal clips) and large foreign bodies (eg, pace-
makers and implants). Otherwise, the images contain a wide 
variation in terms of anatomic differences (size and density) 
and histopathologic findings (including benign and malig-
nant cases), and the dataset corresponds to what is typically 
found in screening clinics.

Abbreviations
GAN = generative adversarial network, MLO = mediolateral 
oblique

Summary
Progressive generative adversarial network architecture can be used 
to create high-resolution synthetic mammograms that are not easily 
distinguishable from real images.

Key Points
 n Progressive generative adversarial network architecture can be used 

to create high-resolution synthetic mammograms.
 n It is almost impossible for domain experts to distinguish these syn-

thetic images from real images.
 n Synthetic images can suffer from subtle image artifacts that may 

not be noticed by domain experts.

Figure 1: Schematic representation of a generative adversarial network. 

Figure 2: Illustration of the progressive training process. Data are pixels.

http://radiology-ai.rsna.org
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were each asked to select the real image in 10 randomly ordered 
pairs of real and synthetic images with no time limit.

Participant demographics.—A total of 117 readers volun-
teered to take part in our study. Of the 117, 47% (55 of 117) 
were radiologists and 53% (62 of 117) were nonradiologists. 
Of the 55 radiologists, 82% (45 of 55) were board certified and 
18% (10 of 55) were trainees; 60% of the radiologists (33 of 
55) were breast specialists and 40% (22 of 55) were not. Of the 
breast specialists, 94% (31 of 33) worked in breast screening, 
whereas 6% (two of 33) did not. Most participants complet-
ed the process once; however, there were 16 repeated efforts, 
which we also include in the statistical analysis.

Statistical analyses.—We aimed to investigate the extent to which 
participant responses were close to random. For the remainder of 
this work, we define the probability of a participant correctly iden-
tifying the real image in a given pair as the success probability.

Under the hypothesis of random responses, the number of 
successes xi for subject i in 10 repeated Bernoulli trials would 
follow a binomial distribution with some success probability \pi 
(xi  Bin [10,π]). The assumptions made under the binomial 

We provide more details about mutual information in Ap-
pendix E3 (supplement).

Reader Study
We conducted a randomized user study to determine whether 
synthetic images could be distinguished from real ones as 
a proxy for their perceptual realism. A total of 1000 syn-
thetic and 1000 real randomly sampled mediolateral oblique 
(MLO) images were used. We subsequently excluded syn-
thetic images with visible artifacts and real images of low 
acquisition quality.

The decision to use only MLO images was aimed at reducing 
the number of factors influencing the outcome and was based on 
our observation that the MLO view is more challenging for the 
network to generate. We observed roughly twice as many MLO 
images with visible artifacts as craniocaudal images.

Randomly selected real and synthetic image pairs were dis-
played in random order within a custom tablet application with 
image pinch and zoom capability (Fig 4, Appendix E4 [supple-
ment]). The application was offered to attendees during the 
104th Scientific Assembly and Annual Meeting of the Radio-
logical Society of North America in Chicago in 2018. Volunteers 

Figure 3: Moment plots assessing the pixel distribution alignment between real and synthetic images. Red dots are moments of 
real images and blue dots are synthetic image moments. Subjectively, there appears to be a considerable degree of moment overlap. 
M1 = mean, M2 = variance, M3 = skewness, M4 = kurtosis, M5 = hyperskewness.

Figure 4: Screenshots of the survey (left) and tutorial (middle) pages of the user study iPad application. Screenshot of image presentation layout 
(right). Two full-field digital mammographic images, one real and one synthetic, are displayed simultaneously. Users are able to pinch and zoom, are 
able to scroll the images, and have unlimited time to compare and assess them. The right-hand image has been zoomed in for demonstration purposes. 
One image from each of 10 randomly assigned pairs must eventually be selected by the user as being “real.”
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5.2 and 5.5, which is very close to the theoretical “worst case” of 
six neighbors, corresponding to perfect overlap.

Sources of misalignment.—Prompted by the lower-than-ex-
pected mutual information between moment pairs, we took a 
closer look into the sources of misalignment.

Two main factors govern the mutual-information score, 
namely the support and the shape of the real (target) and syn-
thetic (source) distributions. Good alignment in the support of 
the two distributions guarantees sample diversity and is arguably 
more important than shape alignment.

In Figure 6, we visualize each two-dimensional distribution 
of moment pairs by using kernel-density estimation plots and 10 
contours equally spaced between the 95th and 99.99th percen-
tile. For the 97th percentile, we also presented the percentage of 
the real distribution contour covered by the synthetic distribu-
tion. The coverage ranged from roughly 80% to roughly 90%, 
showing good alignment of the support of both distributions 
and a strong indication against model collapse. However, we also 
observed mode misalignment, which led to worse-than-antici-
pated mutual-information scores (Table 2).

Reader Study
As previously mentioned, we used the x2 goodness-of-fit test 
with the null hypothesis that our observations are drawn from 
a binomial distribution with a success probability π value of 
0.5, corresponding to random responses. The P value of the 
test is .999, which indicates failure to reject the null hypoth-

hypothesis are that the outcome of one trial does not affect the 
results of another and that conditions are the same for each trial.

We can assume that responses are independent, as each par-
ticipant was presented with a random set of 10 pairs of real and 
synthetic images drawn with replacement from 1000 candidates 
per set.

However, the conditions of each trial may have varied be-
cause of two possible effects: some participants may have been 
more observant than others and thus more successful in distin-
guishing between real and synthetic images, and it is possible 
that our participants became more effective as they were pre-
sented with more images.

We used the x2 goodness-of-fit test with the null hypothesis 
that our observations were drawn from a binomial distribution 
with a success probability of π = 0.5 (coin toss).

We used the Kruskal-Wallis test followed by Conover post 
hoc analysis to test the hypothesis that participants would im-
prove during the experiment and for all stratification analyses.

Results

Image Resolution and Qualitative Assessment
We successfully generated images that were 1280 3 1024 pix-
els, which, to our knowledge, is the highest spatial resolution 
reported to date both for natural and medical images (Fig 5).

We observed that the craniocaudal view was subjectively 
easier for the network to successfully synthesize and exhibited 
fewer artifacts than the MLO view. Casual inspection of 1000 
random synthetic images from each view, by an untrained ob-
server (D.K.), revealed 64 (6.4%) craniocaudal images and 136 
(13.6%) MLO images with obvious artifacts. Examples of some 
of the most common artifacts we observed are shown in Figure 
E2 (supplement).

Distributional Alignment
Scatterplots for all five moment pairs are presented in Figure 
3, visually showing good overlap between real and synthetic 
images. In addition, we quantified the distributional overlap by 
means of mutual information in the following scenarios.

Mutual information between moment pairs.—The mutual 
information for all moment pairs is presented in Table 1 and 
ranges from 60% to 78%. Higher values indicate better overlap 
between the two groups, namely real and synthetic images.

Mutual information between moments and the real and/or 
synthetic label.—The mutual information between moments 
and the real and/or synthetic label is presented in Table 2. It 
should be noted that the maximum possible value in this case 
is 0.69. Low values indicate difficulty in separating the images 
based on each moment and therefore indicate high overlap. We 
can observe that the value is low for most moments.

In Table 2, we also present the average number of neighbors 
mi within a radius equal to di, the distance to the third nearest 
neighbor within the same class (Appendix E4 [supplement]). We 
observed that the average number of neighbors ranged between 

Table 1: Mutual Information between Real and Syn-
thetic Image Moments

Moment M1 M2 M3 M4 M5

M1 0.7681 0.7735 0.7778 0.7786 0.7765
M2 … 0.7392 0.7438 0.7644 0.7464
M3 … … 0.6961 0.7247 0.7075
M4 … … … 0.7524 0.7211
M5 … … … … 0.6057

Note.—M1 = mean, M2 = variance, M3 = skewness, M4 = 
kurtosis, M5 = skewness.

Figure 5: Pixel resolution of various generative adversarial network (GAN) 
architectures reported in the literature: Wasserstein GAN with gradient penalty 
(WGAN-GP) (8), StarGAN (9), Glow (10), cycle-consistent GAN (CycleGAN) 
(11), BigGAN (12), and progressive growing GAN (PGGAN) (2).

http://radiology-ai.rsna.org
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By considering all attempts, we reported the following P 
values, with the numbers in parentheses indicating the num-
ber of attempts in each cohort: radiologists (n = 64) versus 
nonradiologists (n = 69) (P = .4928); board-certified radi-
ologists (n = 55) versus trainees (n = 11) (P = .9783); breast 
specialists (n = 37) versus non–breast specialists (n = 27) (P 
= .0773); and working in screening (n = 35) versus not (n = 
29) (P = .1470).

By considering only the first attempt per participant, we 
reported the following P values: radiologists (n = 55) versus 
nonradiologists (n = 62) (P =.502); board-certified radiologists 
(n = 45) versus trainees (n = 10) (P = .4091); breast specialists 
(n = 33) versus non–breast specialists (n = 22) (P = .2840); and 
working in screening (n = 31) versus not (n = 24) (P = .4986).

All P values are above the 5% significance level; however, 
some cohorts contained too few samples for this test to be 
conclusive.

Finally, Table 4 shows the success probability for all groups.

Table 2: Mutual Information and Average Number of Neighbors between Image Mo-
ments

Parameter M1 M2 M3 M4 M5

Mutual information 0.01772 0.04087 0.04096 0.01138 0
Average no. of neigh-

bors
5.44 5.32 5.32 5.47 5.53

Note.—A random draw from the same distribution for both classes (real or fake) is expected to 
have six neighbors on average. M1 = mean, M2 = variance, M3 = skewness, M4 = kurtosis, M5 = 
hyperskewness.

Figure 6: Distributional alignment of moments. We use kernel-density estimation plots to approximate the distribu-
tions of real and synthetic images, drawn in red and blue, respectively. We show the contours of the kernel-density 
estimation plots drawn at 10 regular intervals between the 95th and 99.99th percentile. More prominent dashed 
lines denote the contours at the 97th percentile and with x, we draw the models of the kernel-density estimation plots. 
Finally, we show the percentage of the real contour covered by the synthetic image contour at the 97th percentile. 
cov = covariance.

esis at any significance level and a strong indication in its 
favor. The histogram of all responses is presented in Figure 7.

To test whether there was any statistically significant merit 
to the hypothesis that the success probability increased as the 
experiment progressed, we grouped the results per response 
for all participants and employed a Kruskal-Wallis test fol-
lowed by Conover post hoc analysis. The P value of the Krus-
kal-Wallis test was .84, indicating failure to reject the null 
hypothesis that there is no statistically significant difference 
between the groups. Conover post hoc analysis was also nega-
tive for any significance level lower than 5% for all groups 
(Table 3).

Stratification analysis.—We used the Kruskal-Wallis test to es-
timate whether there is any statistically significant difference 
between the following participant of different demographics. 
Kernel-density estimation plots for the main stratifications can 
be seen in Figure 7.
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Discussion
In this work, we demonstrated that generation of realistic 
whole-image, full-field digital mammograms is possible by 
using progressive GAN architecture; we achieved the high-
est resolution reported to date, to our knowledge; and we 
achieved the level of realism required to ensure that synthetic 
images are perceptually inseparable from real images, even by 
domain experts.

Because of the specialist nature of medical imaging, it is 
reasonable to assume that domain experts would have per-
formed better than nontrained observers in the reader study. 
However, our results show that both expert and nonexpert 
readers converged to the same effectively random success 
probability. Breast radiologists as a subgroup performed simi-
larly. The overall distribution for each group approximated to 
random, with no statistical difference between the groups in 
their performance. Furthermore, the results indicate that par-
ticipants did not improve over the course of assessing the 10 
cases, likely because of the fact that they received no feedback 
during the assessment.

Vascular Artifacts
Even in the case of very realistic synthetic images, close inspec-
tion can reveal subtle artifactual patterns. The path and struc-
ture of some background blood vessels within the synthesized 
breast parenchyma do not always perfectly conform to normal 

anatomic logic. In some cases, vessels seem to arise with no 
origin, others taper proximally rather than distally, and others 
converge rather than diverge as they approach the skin (Fig E3 
[supplement]).

It is of note that the vast majority of radiologists in the 
study did not pick up on this, suggesting that vascular patterns 
and morphologic characteristics are not image features that are 
routinely assessed on full-field digital mammograms, opposed 
to retinal imaging, for instance. Only one radiologist noticed 
these artifacts during the reader study and subsequently cor-
rectly identified nine of 10 real images from the randomly 
paired cases.

We have not found any literature suggesting that such vascu-
lar morphologic characteristics on mammograms are associated 
with any malignant pathologic conditions.

Common Failures and Artifacts
We observed several types of failures in the generated im-
ages during the qualitative assessment (Fig E4 [supplement]). 
Some of them are clearly network failures, which indicates 
that not all possible latent vectors correspond to valid images 
in pixel space. Others can be attributed to problems in the 
training set. For instance, we observed that a small number of 
images containing breast implants were accidentally included 
in the training set, and the generator sometimes attempted to 
unsuccessfully produce such images (Fig E4 [supplement]).

Table 3: Conover Post Hoc Analysis for All Question Pairs

Question Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Question 7 Question 8 Question 9 Question 10

1 21 .221 .541 .067 .541 .328 .271 .178 .541 .623
2 … 21 .541 .541 .541 .807 .903 .903 .541 .463
3 … … 21 .221 ..99 .714 .624 .463 ..99 .903
4 … … … 21 .221 .392 .463 .624 .221 .178
5 … … … … 21 .713 .624 .463 ..99 .903
6 … … … … … 21 .903 .714 .714 .624
7 … … … … … … 21 .807 .624 .541
8 … … … … … … … 21 .463 .392
9 … … … … … … … … 21 .903
10 … … … … … … … … … 21

Note.—Data are P values for all possible question pairs. Question 1 corresponds to the first pair of images presented to the participant, and 
question 10 corresponds to the last pair of images presented to the participant. 

Figure 7: Histogram distribution of all responses (left), kernel-density estimation plot of stratified results among radiologists and nonradiologists (middle), and kernel-density 
estimation plot of stratified results between breast radiologists and all other radiologists (right).

http://radiology-ai.rsna.org
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Calcifications and Metal Markers
Calcifications are caused by calcium deposition and can occur 
naturally in the breast. They can vary in size and shape but ap-
pear very  bright (white) on the image as they fully absorb passing 
x-rays. They are important in mammography because certain pat-
terns can be a strong indication of malignancy (clustered micro-
calcifications), whereas others are benign (intravascular deposits).

External skin markers are frequently used by technicians per-
forming mammography to indicate the position of a palpable 
lesion in the breast for the attention of the radiologists. They also 
appear very bright and are distinctively fully circular in shape 
(Fig E5 [supplement]).

We observed that the generator strongly resisted producing 
these structures. It is only at late stages of training that features 
roughly similar to medium-sized calcifications appeared in the 
generations, but they were not convincing. Our hypothesis is 
that the network architecture acts as a strong prior against such 
discontinuous features, a theory supported by the literature (13).

Limitations
As with any work that uses neural networks, a major limitation is 
the breadth and quantity of data available for training. Although 
our screening mammographic dataset is large and covers a wide 
demographic population, the prevalence of malignant images is 
low and it is unlikely that the network would be successful in 
synthesizing malignancies.

The reader study had limitations. The study took place at a 
busy radiology conference with bright lighting, and an iPad Pro 
(Apple) was used. Participants self-volunteered after approaching 
our commercial booth and were often distracted during the game. 
Some participants effectively “gave up” after several cases after be-
ing convinced they were failing to find real images and selected 
subsequent images as being real at random. Some visitors also re-
fused to participate because they were reluctant to be compared 
with their colleagues. A more ideal study setting would have been 
a standard radiology reading room with a statistically powered co-
hort of participants in both groups required to give full attention 
to the task until completion of all cases. Additionally, the images 
were not at full clinical resolution, a limitation that cannot cur-
rently be overcome because of the limitations of GANs.

Although we have presented results for all group stratifica-
tions, some sample sizes were insufficient to extract reliable con-
clusions about statistical significance.

Future Work
We suggest that further work on GANs in medical imaging 
should explore several areas: refining GAN architecture to cre-
ate higher-resolution images closer to those of clinical full-field 
digital mammography; cosynthesizing both MLO and cranio-
caudal views simultaneously to produce image pairs that rep-
resent the same breast at different angles; assessing whether the 
GAN-derived synthetic images, or patches of them, can suc-
cessfully be used to augment training datasets for deep learning 
malignancy classifiers; and investigating the effects of both the 
perceived and quantitative realism of outlier pruning on the 
basis of moments plots.
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Repeated efforts 16 0.475 6 0.192

Note.—Average 6 standard deviation is shown for the success 
rate.
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