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a b s t r a c t

In the past years, many authors have considered application of machine learning methodologies to
effect robot learning by demonstration. Gaussian mixture regression (GMR) is one of the most successful
methodologies used for this purpose. A major limitation of GMR models concerns automatic selection of
the proper number of model states, i.e., the number of model component densities. Existing methods,
including likelihood- or entropy-based criteria, usually tend to yield noisy model size estimates while
imposing heavy computational requirements. Recently, Dirichlet process (infinite) mixture models have
emerged in the cornerstone of nonparametric Bayesian statistics as promising candidates for clustering
applications where the number of clusters is unknown a priori. Under this motivation, to resolve
the aforementioned issues of GMR-based methods for robot learning by demonstration, in this paper
we introduce a nonparametric Bayesian formulation for the GMR model, the Dirichlet process GMR
model. We derive an efficient variational Bayesian inference algorithm for the proposed model, and we
experimentally investigate its efficacy as a robot learning by demonstration methodology, considering a
number of demanding robot learning by demonstration scenarios.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

In the last years, robot learning by demonstration has turned
out to be one of the most active research topics in the field of
robotics. Robot learning by demonstration encompasses methods
by which a robot can learn new skills by simple observation of
a human teacher, similar to the way humans learn new skills
by imitation [1–8]. Coming up with successful robot learning
by demonstration methodologies can be of great benefit to the
robotics community, since it will greatly obviate the need of
programming a robot how to perform a task, which can be
rather tedious and expensive, while, by making robots more user-
friendly, it increases the appeal of applying robots to real-life
environments.

Toward this end, robotics researchers have utilized a multitude
of methodologies from as diverse research areas as machine
learning, computer vision [9], and human–robot interaction [10].
Learning by demonstration algorithms may comprise learning an
approximation to the state-action mapping (mapping function),
or learning a model of the world dynamics and deriving a policy
from this information (system model). Mapping function learning
comprises classification-based and regression-based approaches.
Classification approaches categorize their input into discrete
classes, thus the input to the classifier is the robot state, and the
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discrete output classes are robot actions. GaussianMixtureModels
(GMMs), decision trees, Bayesian networks, and hidden Markov
models are typical methods used to effect the classification task.
Regression approaches map demonstration states to continuous
action spaces resulting from combining multiple demonstration
set actions. As such, typically regression approaches apply to low-
level trajectory-based learning by demonstration, and not to high-
level behaviors. Finally, the system model approach uses a state
transition model of the world, and from this derives a policy,
typically by means of reinforcement learning (RL). As such, it
usually has the drawback of high computational demands, due to
the considerably large dimensionality of the entailed search space
of the RL algorithm.

Recently, several researchers have also considered developing
libraries of dynamic movement primitives (DMPs) as a way to
facilitate generalization of the learned models to new unseen
situations [11,12]. DMPs are sets of differential equations that
represent the task’s dynamics. Generalization using DMPs is
effected by parameterizing them with new appropriate start and
goal positions to generalize to novel situations, with the advantage
of good robustness to perturbation. This is typically performed
by application of regression methods based on local weighting of
training data at execution time.

In this work, we focus on trajectory-based learning by demon-
stration techniques. The most popular trends of work in this field
consist in the investigation of the utility of probabilistic gener-
ative models, such as Gaussian mixture regression (GMR) and
derivatives, [13] hiddenMarkovmodels [14], and Gaussian process
regression [2]. GMR, in particular, has been shown to be very
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successful in encoding demonstrations, extracting their underly-
ing constraints, and reproducing smooth generalized motor tra-
jectories, while imposing considerably low computational costs
[15,1]. GMR-based approaches toward learning by demonstration
rely on the postulation of a Gaussian mixture model to encode the
covariance relations between different variables (either in the task
space, or in the robot joints space). If the correlations vary signif-
icantly between regions, then each local region of the state space
visited during the demonstrations will need a few Gaussians to en-
code these local dynamics. Given the required number of Gaussians
and a set of training data (human-generated demonstrations), the
expectation-maximization (EM) algorithm is eventually employed
to estimate the parameters of the model.

The most common data-driven methodologies for GMR model
selection, that is determination of the appropriate number of
GMR model component densities, are typically based on the
popular Bayesian information criterion (BIC) for finite mixture
models [16], or other related likelihood-based or entropy-based
model size selection criteria [17]. However, such model selection
methods suffer from significant drawbacks: To begin with, they
entail training of multiple models (to select from), a tedious
procedure which can be applied only up to a limited extent, due
to its computational demands. Moreover, effectiveness of the BIC
criterion is contingent on a number of conditions, which are not
necessarily fulfilled in real-life application scenarios [17]; thus,
BIC-based approximations are rather prone to yielding noisymodel
size estimates. Most significantly, likelihood- and entropy-based
model selection criteria are notorious for their heavy overfitting
proneness, hence often leading to over-estimation of the required
model size [18].

Dirichlet process mixture (DPM) models are flexible Bayesian
nonparametric models which have become very popular in
statistics over the last few years, for performing nonparametric
density estimation [19–21]. Briefly, a realization of a DPM can be
seen as an infinite mixture of distributions with given parametric
shape (e.g., Gaussian). This theory is based on the observation
that an infinite number of component distributions in an ordinary
finite mixture model tends on the limit to a Dirichlet process prior
[20,22]. Indeed, although theoretically a DPMmodel has an infinite
number of parameters, it turns out that inference for the model is
possible, since only the parameters of a finite number of mixture
components need to be represented explicitly; this can be done
by means of an elegant and computationally efficient truncated
variational Bayesian approximation [23]. Eventually, as a part of
themodel fitting procedure, the nonparametric Bayesian inference
scheme induced by a DPM model yields a posterior distribution
on the proper number of model component densities [24], rather
than selecting a fixed number of mixture components. Hence, the
obtained nonparametric Bayesian formulation eliminates the need
of doing inference (or making arbitrary choices) on the number of
mixture components necessary to represent the modeled data.

Under thismotivation, in thisworkwe introduce anonparamet-
ric Bayesian approach toward Gaussian mixture regression, with
application to robot learning by demonstration. Our approach is
based on the consideration of a GMR model with a countably in-
finite number of constituent states, and is effected by utilization
of a Dirichlet process (DP) prior distribution; we shall be refer-
ring to this new model as the Dirichlet process Gaussian mix-
ture regression (DPGMR)model. Inference for the DPGMRmodel is
conducted using an elegant variational Bayesian algorithm, and is
facilitated by means of a stick-breaking construction of the
DP prior, which allows for the derivation of a computationally
tractable expression of the model variational posteriors. Our novel
mixture regression methodology is subsequently applied to yield
a nonparametric Bayesian approach toward robot learning by
demonstration, the efficacy of which is illustrated by considering a
number of demanding robot learning by demonstration scenarios.

The remainder of this paper is organized as follows: In Sec-
tion 2, Gaussian mixture regression as applied to robot learning
by demonstration is introduced in a concise manner. In Section 3,
we provide a brief review of concepts from the field of Dirichlet
process mixture models, emerging in the cornerstone of non-
parametric Bayesian statistics. In Section 4, we derive the pro-
posed nonparametric Bayesian approach toward robot learning by
demonstration. In Section 5, the experimental evaluation of the
proposed algorithm is performed. The final section concludes this
paper.

2. Gaussian mixture regression for robot learning by demon-
stration

Let us consider the current position of the moving end-
effector of a robot as the predictor variable � of our machine
learning algorithm, and the velocity that must be adopted by the
robot’s end-effector at the next time-step, in order to comply
with the learnt trajectory, as the algorithm’s response variable
�̇. GMR postulates a model of the conditional expectation of the
set of response variables �̇ given the set of predictor variables
�, by exploiting the information available in a set of training
observations {�

j
, �̇

j
}
N

j=1.
A significant advantage of GMR-based methodologies is that,

contrary to most traditional regression methodologies, GMR does
not directly approximate the regression function but postulates a
GMM to model the joint probability distribution of the considered
response and predictor variables (�̇ and�), i.e. it considers amodel
of the form

p(�, �̇|⇡, {µi,⌃i}
K

i=1) =

KX

i=1

⇡iN (�, �̇|µi,⌃i) (1)

where⇡ = (⇡i)
K

i=1 are the priorweights of themixture component
densities, and N (·|µi,⌃i) is a Gaussian with mean µi and covari-
ancematrix⌃i. As a result, contrary tomost discriminative regres-
sion algorithms (e.g., SVMs [25], and Gaussian processes [26]), the
computational time required for trajectory reproduction does not
increasewith the number of demonstrations provided to the robot,
which is a particularly important property for lifelong learning
robots. Indeed, the available model training data provided by the
employed human demonstrators is processed in only an off-line
fashion, to obtain the estimates of themodel parameters. This way,
prediction generation under GMR reduces to a simple weighted
sum of linear models, which is advantageous because trajectory
reproduction becomes fast enough to be used at any appropriate
time by the robot.

The GMM (1) postulated under the GMR approach is trained by
means of the EM algorithm [17], using a set of training data corre-
sponding to a number of trajectories obtained by human demon-
strators. Then, using the obtained GMM p(�, �̇|⇡, {µi,⌃i}

K

i=1),
Gaussian mixture regression retrieves a generalized trajectory
by estimating at each time step the conditional expectation
E[�̇|�;⇡, {µi,⌃i}

K

i=1]. Expressing the means µi of the component
densities of the postulated GMM (1) in the form

µi =

"
µ
�
i

µ
�̇
i

#

(2)

and introducing the notation

⌃i =

"
⌃
�
i

⌃
��̇
i

⌃
�̇�
i

⌃
�̇
i

#

(3)

for the covariance matrices of the model component densities,
we can show that, based on (1) and the assumptions (2)–(3),
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the conditional probability p(�̇|�;⇡, {µi,⌃i}
K

i=1) of the response
variables �̇ given the predictor variables � and the postulated
GMM yields [27]

p(�̇|�;⇡, {µi,⌃i}
K

i=1) = N (�̇|µ̂, ⌃̂) (4)
where

µ̂ =

KX

i=1

�i(�)[µ
�̇
i

+ ⌃
�̇�
i

(⌃
�
i
)�1(� � µ

�
i
)] (5)

⌃̂ =

KX

i=1

�2
i
(�)[⌃

�̇
i

� ⌃
�̇�
i

(⌃
�
i
)�1⌃

��̇
i

] (6)

and

�i(�) =
⇡iN (�|µ

�
i
,⌃

�
i
)

KP
k=1
⇡kN (�|µ

�
k
,⌃

�
k
)

. (7)

Based on the result (4), predictions under the GMR approach can
be obtained by taking the conditional expectations E(�̇|�;⇡, {µi,
⌃i}

K

i=1), i.e.

ḃ� = E(�̇|�;⇡, {µi,⌃i}
K

i=1) = µ̂. (8)
As we observe, a significant merit of GMR consists in the fact that
it provides a full predictive distribution, thus a predictive variance

V(�̇|�;⇡, {µi,⌃i}
K

i=1) = ⌃̂

is available at any position of the end-effector. Therefore, GMR
offers a model-estimated measure of predictive uncertainty not
only at specific positions but continuously along the generated
trajectories.

Data-driven selection of the appropriate number of GMR states
(model component densities) is a crucial procedure for successfully
applying GMR-based robot learning by demonstration: The
number of postulated GMR states determines the compromise
between accuracy and smoothness of the obtained response (bias-
variance tradeoff). Optimal model size (order) selection for finite
mixture models is an important but very difficult problem which
has not been completely resolved. Usually, penalized likelihood-
based or entropy-based criteria are used for this purpose [17], such
as the Bayesian information criterion (BIC) of Schwarz [16], and
variants [18].

The BIC model selection criterion as applied to a GMR-fitted
GMM used for trajectory-based robot learning by demonstration
consists in the determination of the number of model component
densities which minimizes the metric

L , �2
NX

n=1

log p({�
n
, �̇

n
}
N

n=1|⇡, {µi,⌃i}
K

i=1) + d logN (9)

where d is the total number of model parameters, hence a function
of the number of mixture component densities K , and N is the
number of available model training data points. BIC has been
shown to provide consistent model order estimators under certain
conditions [28]. However, these conditions are not necessarily
fulfilled in real-world application scenarios [17]. Additionally, BIC
has been found to fit too few components when the model for
the component densities (here, the Gaussian assumption) is valid
and the sample size is not very large [29]. Finally, if the model for
the component densities is not valid, then it has been found to fit
too many components [17]. This is the most common issue that
plagues GMRwhen it comes to its robot learning by demonstration
applications, since it is a problem practitioners are quite often
confronted with, and it may severely undermine the performance
of the GMR-based learning by demonstration algorithm, by giving
rise to overfitting issues.

The main aim of this work is to resolve these very issues of
GMR-based robot learning by demonstration, by coming up with
a method that allows for automatic, data-driven determination of
the proper number ofmodel component densitiesK , without being
vulnerable to overfitting.

3. Dirichlet process mixture models

Dirichlet process models were first introduced by Fergu-
son [30]. A DP is characterized by a base distribution G0 and a posi-
tive scalar↵, usually referred to as the innovation parameter, and is
denoted as DP(G0,↵). Essentially, a DP is a distribution placed over
a distribution. Let us suppose we randomly draw a sample distri-
bution G from a DP, and, subsequently, we independently draw N

random variables {⇥⇤
n
}
N

n=1 from G:

G|{G0,↵} ⇠ DP(G0,↵) (10)
⇥⇤

n
|G ⇠ G, n = 1, . . .N. (11)

Integrating outG, the joint distribution of the variables {⇥⇤
n
}
N

n=1 can
be shown to exhibit a clustering effect. Specifically, given the first
N�1 samples ofG, {⇥⇤

n
}
N�1
n=1 , it can be shown that a new sample⇥⇤

N

is either (a) drawn from the base distribution G0 with probability
↵

↵+N�1 , or (b) is selected from the existing draws, according to
a multinomial allocation, with probabilities proportional to the
number of the previous draws with the same allocation [31]. Let
{⇥c}

K

c=1 be the set of distinct values takenby the variables {⇥⇤
n
}
N�1
n=1 .

Denoting as f
N�1
c

the number of values in {⇥⇤
n
}
N�1
n=1 that equal to

⇥c , the distribution of ⇥⇤

N
given {⇥⇤

n
}
N�1
n=1 can be shown to be of

the form [31]

p(⇥⇤

N
|{⇥⇤

n
}
N�1
n=1 ,G0,↵) =

↵

↵ + N � 1
G0

+

KX

c=1

f
N�1
c

↵ + N � 1
�⇥c

(12)

where �⇥c
denotes the distribution concentrated at a single point

⇥c . These results illustrate two key properties of the DP scheme.
First, the innovation parameter ↵ plays a key-role in determining
the number of distinct parameter values. A larger ↵ induces
a higher tendency of drawing new parameters from the base
distribution G0; indeed, as ↵ ! 1 we get G ! G0. On the
contrary, as ↵ ! 0 all {⇥n}

N

n=1 tend to cluster to a single random
variable. Second, the more often a parameter is shared, the more
likely it will be shared in the future.

A characterization of the (unconditional) distribution of the
random variable G drawn from a Dirichlet process DP(G0,↵) is
provided by the stick-breaking construction of Sethuraman [23].
Consider two infinite collections of independent random variables
v = (vc)

1

c=1, {⇥c}
1

c=1, where the vc are drawn from the Beta
distribution Beta(1,↵), and the⇥c are independently drawn from
the base distribution G0. The stick-breaking representation of G is
then given by Sethuraman [23]

G =

1X

c=1

⇡c(v)�⇥c
(13)

where

⇡c(v) = vc

c�1Y

j=1

(1 � vj) 2 [0, 1] (14)

and
1X

c=1

⇡c(v) = 1. (15)
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The stick-breaking representation of the DP makes clear that the
random variable G drawn from a DP is discrete. It shows explicitly
that the support of G consists of a countably infinite sum of atoms
located at ⇥c , drawn independently from G0. It is also apparent
that the innovation parameter ↵ controls the mean value of the
stick variables, vc , as a hyperparameter of their prior distribution;
hence, it regulates the effective number of the distinct values of the
drawn atoms [23].

Under the stick-breaking representation (13) of the Dirichlet
process, the atoms ⇥c , drawn independently from the base
distribution G0, can be seen as the parameters of the component
distributions of a mixture model comprising an unbounded
number of component densities, with mixing proportions ⇡c(v).
This way, DP mixture (DPM) models are formulated [22].

Let y = {yn}Nn=1 be a set of observations modeled by a
DPM model. Then, each one of the observations yn is assumed
to be drawn from its own probability density function p(yn|⇥⇤

n
)

parametrized by the parameter set ⇥⇤
n
. All ⇥⇤

n
follow a common

DP prior, and given the discreteness of G, may share the same value
⇥c with probability ⇡c(v). Introducing the indicator variables x =

(xn)
N

n=1, with xn = c denoting that⇥⇤
n
takes on the value of⇥c , the

modeled dataset y can be described as arising from the process
yn|xn = c;⇥c ⇠ p(yn|⇥c) (16)
xn|⇡(v) ⇠ Mult(⇡(v)) (17)
vc |↵ ⇠ Beta(1,↵) (18)
⇥c |G0 ⇠ G0 (c = 1, . . . ,1) (19)
where ⇡(v) = (⇡c(v))1c=1 is given by (14), and Mult(⇡(v)) is a
Multinomial distribution over ⇡(v).

4. Proposed approach

Let y = {yn}Nn=1, with yn = {�
n
, �̇

n
} being the set of predictor

variables and response variables the joint distribution of which is
represented by means of a postulated GMR model. We want to
model this data bymeans of a nonparametric Bayesian formulation
of the GMR model. For this purpose, we postulate a GMR model
with a countably infinite number of states. To formulate such a
model, we begin by postulating a Gaussian DPMmodel for the joint
distribution of the � and �̇, and we further derive the expressions
for the conditional predictive distribution of the response variables
�̇ given the predictor variables �.

Denoting as x = (xn)
N

n=1 the labels of the GMR states emitting
the fitting data y, we have
yn|xn = c;⇥c ⇠ N (µc,Rc) (20)
for the state-conditional likelihoods of the model, where ⇥c =

{µc,Rc}, and N (µc,Rc) is a Gaussian distribution with mean µc

and precision (inverse covariance) Rc , while it holds

p(x) =

NY

n=1

p(xn|⇡(v)) (21)

with the p(xn = c|⇡(v)) being the prior probabilities of the model
states, stemming from the imposed Dirichlet process, given by (14)
and (17).

Definition. We denote as the Dirichlet process Gaussian mixture
regression (DPGMR) model a Gaussian mixture regression model
with a countably infinite number of states, based on the
introduction of a Dirichlet process as the prior of its state emission
probabilities.

4.1. Inference for the DPGMR model

Inference for DPM-type models can be conducted under a
Bayesian setting, typically bymeans of variational Bayes (e.g., [32]),

or Monte Carlo techniques (e.g., [33]). Here, we prefer a variational
Bayesian approach, due to its considerably better scalability
in terms of computational costs. Bayesian inference involves
introduction of a set of appropriate priors over the model
parameters, and derivation of the corresponding (approximate)
posterior densities. We choose conjugate-exponential priors, as
this selection greatly simplifies inference and interpretability [27].
Hence, we impose a joint Normal–Wishart distribution over the
means and precisions of the Gaussian likelihoods of the model
states

p(⇥c) = N W(µc,Rc |�c,mc,!, c). (22)

We mention that in (22) we have assumed a common value for
the hyperparameters ! of the model component densities, i.e.,
!c = !c0 = !, 8c 6= c

0. We make this hyperparameter tying
assumption so as to simplify the resulting expression of the model
predictive density, derived in Section 4.2. Additionally, taking
under consideration the effect of the innovation hyperparameter
↵ on the number of effective component densities (states) of a
DPM-type model, we choose to also impose a (hyper-)prior over
the innovation hyperparameter ↵ of the DPGMR model. We use a
Gamma prior with

p(↵) = G(↵|�1, �2). (23)

Our variational Bayesian inference formalism for the DPGMR
model consists in derivation of a family of variational posterior dis-
tributions q(.) which approximate the true posterior distribution
over the infinite sets v = (vc)

1

c=1 and {µc,Rc}
1

c=1, and the innova-
tion parameter ↵. Apparently, under this infinite dimensional set-
ting, Bayesian inference is not tractable. For this reason,we employ
a common strategy in DPM literature, formulated on the basis of a
truncated stick-breaking representation of the DP [32]. That is, we
fix a value K and we let the variational posterior over the vi have
the property q(vK = 1) = 1. In other words, we set ⇡c(v) equal to
zero for c > K . Note that, under this setting, the treated DPGMR
model involves a full DP prior; truncation is not imposed on the
model itself, but only on the variational distribution to allow for
a tractable inference procedure. Hence, the truncation level K is a
variational parameter which can be freely set, and not part of the
prior model specification.

Let W = {v,↵, x, µc,Rc}
K

c=1 be the set of hidden variables
and unknown parameters of the DPGMRmodel over which a prior
distribution has been imposed, and ⌅ be the set of the hyperpa-
rameters of the imposed priors, ⌅ = {�c,mc,!, c, �1, �2}

K

c=1.
Variational Bayesian inference consists in the introduction of an
arbitrary distribution q(W ) to approximate the actual posterior
p(W |⌅ , y), which is computationally intractable [27]. Under this
assumption, the log marginal likelihood (log evidence), log p(y), of
the model yields [34]

log p(y) = L(q) + KL(qkp) (24)

where

L(q) =

Z
dWq(W ) log

p(y,W |⌅)

q(W )
(25)

and KL(qkp) stands for the Kullback–Leibler (KL) divergence
between the (approximate) variational posterior, q(W ), and the
actual posterior, p(W |⌅ , y). Since KL divergence is nonnegative,
L(q) forms a strict lower bound of the log evidence, and would
become exact if q(W ) = p(W |⌅ , y). Hence, by maximizing this
lower bound L(q) (variational free energy) so that it becomes
as tight as possible, not only do we minimize the KL-divergence
between the true and the variational posterior, but we also
implicitly integrate out the unknownsW .

Due to the considered conjugate prior configuration of the
DPGMR model, the variational posterior q(W ) is expected to take
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the same functional form as the prior, p(W ) [18]; thus, it is ex-
pected to factorize as

q(W ) = q(x)q(↵)

 
K�1Y

c=1

q(vc)

!
KY

c=1

q(µc,Rc) (26)

with

q(x) =

NY

n=1

q(xn). (27)

Then, the variational free energy of the model reads (ignoring con-
stant terms)

L(q) =

KX

c=1

Z
dRc

Z
dµc


q(µc,Rc)

⇥ log
p(µc,Rc |�c,mc,!, c)

q(µc,Rc)

�

+

Z
d↵q(↵)

(

log
p(↵|�1, �2)

q(↵)

+

K�1X

c=1

Z
dvcq(vc) log

p(vc |↵)

q(vc)

)

+

KX

c=1

NX

n=1

q(xn = c)

⇢Z
dvq(v) log

p(xn = c|⇡(v))
q(xn = c)

+

Z
dRc

Z
dµcq(µc,Rc) log p(yn|⇥c)

�
. (28)

The analytical expression of the variational free energy L(q) can
be found in the Appendix.

Derivation of the variational posterior distribution q(W )
involves maximization of the variational free energy L(q) over
each one of the factors of q(W ) in turn, holding the others
fixed, in an iterative manner [35]. By construction, this iterative,
consecutive updating of the variational posterior distribution is
guaranteed to monotonically and maximally increase the free
energy L(q), which functions as the convergence criterion of the
derived inference algorithm for the DPGMR model [18].

Let us denote as h.i the posterior expectation of a quantity.
We begin with the posterior distributions over the DP parameters.
From (28), we have

q(vc) = Beta(⌘c,1, ⌘c,2) (29)

where

⌘c,1 = 1 +

NX

n=1

q(xn = c) (30)

⌘c,2 = h↵i +

KX

c0=c+1

NX

n=1

q(xn = c
0) (31)

and

q(↵) = G(↵|�̂1, �̂2) (32)

where

�̂1 = �1 + K � 1 (33)

�̂2 = �2 �

K�1X

c=1

[ (⌘c,2) �  (⌘c,1 + ⌘c,2)] (34)

and  (.) denotes the Digamma function.

Similar, regarding the posteriors over the likelihood parame-
ters, we have

q(⇥c) = q(µc,Rc) = N W(µc,Rc |�̃c, m̃c, !̃,  ̃ c) (35)

where we introduce the notation

�̃c ,
NX

n=1

q(xn = c) (36)

ȳc ,

NP
n=1

q(xn = c)yn

�̃c
(37)

�c ,
NX

n=1

q(xn = c) (yn � ȳc) (yn � ȳc)T (38)

and, we have

!̃ = ! + 1 +
1
K

KX

c=1

�̃c (39)

 ̃ c =  c +�c +
�c �̃c

�c + �̃c
(mc � ȳc)(mc � ȳc)T (40)

�̃c = �c + �̃c (41)

m̃c =
�cmc + �̃c ȳc

�̃c
. (42)

Finally, the posteriors over themodel states generating the data
yield

q(xn = c) / ⇡̃c(v)p̃(yn|⇥c) (43)

where

⇡̃c(v) , exp(hlog⇡c(v)i)

= exp

"
c�1X

c0=1

hlog(1 � vc0)i + hlog vci

#

(44)

and

p̃(yn|⇥c) , exp(hlog p(yn|⇥c)i)

= exp

�

d

2
log 2⇡ +

1
2
hlog |Rc |i

� 2h(yn � µc)
TRc(yn � µc)i

�
. (45)

The expressions of the posterior expected values included in the
update Eqs. (29)–(45) can be found in the Appendix.

4.2. Predictive density

Having obtained the (variational) Bayesian estimators of the
DPGMR model parameters, we can now proceed to the derivation
of the model predictive density, that is the conditional density
p(�̇|�; y), where y is the training set used for model estimation.

Let us first consider the expression of the joint predictive
density p(�, �̇|y) of our model. Based on the formulation of the
Gaussian DPM employed by our model, we have

p(�, �̇|y) =

Z
dvq(v)

KX

c=1

p(x = c|⇡(v))
Z

dµc

⇥

Z
dRcq(µc,Rc)p(�, �̇|x = c; µc,Rc) (46)
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which yields a Student’s-t predictive density of the form [27]

p(�, �̇|y) =

KX

c=1

h⇡c(v)iSt (�, �̇|m̃c, Sc, !̃ + 1 � d) (47)

where d is the total dimensionality of the modeled input space
{�, �̇}, m̃c is given by (42), and the covariance matrix of the
predictive density Sc yields

Sc =
1 + �̃c

(!̃ + 1 � d)�̃c
 ̃ c (48)

while the expression of the posterior expectations h⇡c(v)i can be
found in the Appendix.

Having obtained the expression of the predictive density
p(�, �̇|y), shown to be of a Student’s-t form, we can now proceed
to the derivation of the conditional predictive density p(�̇|�; y)
of the response variables �̇ given the predictor variables �. Let
us consider the state-conditional expression of the predictive
distribution (47). Setting

m̃c =

"
m̃�

c

m̃�̇
c

#

(49)

and

Sc =

"
S�
c

S��̇
c

S �̇�
c

S �̇
c

#

(50)

we can write

�

�̇

����� x = c; y ⇠ St

 "
m̃�

c

m̃�̇
c

#

,

"
S�
c

S��̇
c

S �̇�
c

S �̇
c

#

, !̃ + 1 � d

!

(51)

where

p(x = c) = h⇡c(v)i . (52)

As discussed, e.g., in [18], the Student’s-t distribution can be
equivalently written as an infinite sum of Gaussians with the same
means and scaled covariances, where the covariance scalars are
Gamma-distributed latent variables:

St(x|µ,⌃, ⌫) =

Z
1

0
N

✓
x
����µ,

1
u
⌃

◆
G
⇣
u

���
⌫

2
,
⌫

2

⌘
du. (53)

Based on this result, (51) can be equivalently expressed as

�

�̇

����� x = c, u; y ⇠ N
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c

m̃�̇
c

#

,
1
u
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(54)

where

u ⇠ G

✓
!̃ + 1 � d

2
,
!̃ + 1 � d

2

◆
. (55)

Using (54), the conditional probability of the response variable �̇
given the value of the predictor variable � reads

�̇|�, u, x = c; y ⇠ N

✓
µ̂c,

1
u
⌃̂c

◆
(56)

whence

�̇|�, u; y ⇠ N

 
KX

c=1

h⇡c(v)iµ̂c,
1
u

KX

c=1

h⇡c(v)i2⌃̂c

!

(57)

where

µ̂c = m̃�̇
c

+ S �̇�
c

(S�
c
)�1(� � m̃�

c
) (58)

⌃̂c = S �̇
c

� S �̇�
c

(S�
c
)�1S��̇

c
. (59)

Eventually, based on the result (57) and the property (53) of the
Student’s-t distribution, the conditional predictive distribution of
our model turns out to yield

�̇|�; y ⇠ St

 
KX

c=1

h⇡c(v)iµ̂c,
KX

c=1

h⇡c(v)i2⌃̂c, !̃ + 1 � d

!

. (60)

Predictions using the DPGMR model can be conducted using the
conditional predictive mean of our model as the estimate of the
response variables �̇ at any prediction time point, i.e.

ˆ̇� = E[�̇|�; y] =

KX

c=1

h⇡c(v)iµ̂c . (61)

The associated conditional predictive variance of the model offers
a measure of uncertainty regarding the generated predictions. It
yields

V[�̇|�; y] =
!̃ + 1 � d

!̃ � 1 � d

KX

c=1

h⇡c(v)i2⌃̂c . (62)

5. Experimental evaluation

In this section, we present our experimental evaluation of the
DPGMR algorithm in a series of applications dealing with robot
learning by demonstration. More specifically, we compare algo-
rithmperformance againstwell established, state-of-the-artmeth-
ods in the field of robotics, namely Gaussian mixture regression
(GMR) [1], and Gaussian process regression (GPR) [36,37]. We
have considered three application scenarios with potential prac-
tical applicability under an one- and a multi-shot learning set-
ting. In all our experiments, we have utilized joint angle data,
whichpresent a great challenge for learning algorithms (compared,
e.g., to end-effector data). Our source codes have been developed
in Matlab R2011b, and were run on a PC with an Intel Core i7 3.4
GHz CPU, and 16 GB RAM, running Ubuntu Linux 11.04.

For the purposes of our experimental evaluation, we have
employed the NAO robot (academic edition), a humanoid robotic
platformwith 27 degrees of freedom [38]. The training trajectories
were presented to the robot by means of kinesthetics, that
is manually moving the robot’s arms and recording the joint
angles. During this procedure, joint position sampling was
conducted, with the sampling rate set to 20 Hz. The robot
joints actively participating in each experiment varied according
to the specification of the performed motion types (for details
cf. Table 1 and Fig. 1). The aforementioned joint angle data
were collected using a fully threaded NAO-Matlab communication
protocol developed by the authors in Python.

5.1. Experimental setup

In our experiments, the predictor variable � used by the
considered models was the position vector of the robot joints,
whereas the response variable �̇ was the velocity vector that
should be imposed on the robot joints so as to remain on the learnt
trajectory.

Regarding the multi-shot learning experiment, we used mul-
tiple demonstrations of each task, so as to capture the variability
of the human action, and evaluate our model’s ability to general-

ize learned trajectories. Training was conducted using three out of
a total of four available sequences, and the generalization capabili-
ties of the comparedmethodswere evaluated using the fourth data
sequence. Due to the temporal variations observed in the demon-
strations, we pre-processed the sequences using Dynamic Time
Warping (DTW) [39], a method first used in speech recognition
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Table 1
NAO robot joints participating in each experiment and corresponding ranges of movement.

Joints/tasks Lazy eight figures Ph. education Blocking Range (rads)

LShoulderPitch
p

[�2.0857, 2.0857]
LShoulderRoll

p p
[�0.3142, 1.3265]

LElbowYaw
p p

[�2.0857, 2.0857]
LElbowRoll

p p
[1.5446, 0.0349]

RShoulderPitch
p

[�2.0857, 2.0857]
RShoulderRoll

p
[�0.3142, 1.3265]

RElbowYaw
p

[�2.0857, 2.0857]
RElbowRoll

p
[1.5446, 0.0349]

LHipPitch
p

[�1.773912, 0.484090]
LAnklePitch

p
[�1.189516, 0.922747]

RHipPitch
p

[�1.773912, 0.484090]
RAnklePitch

p
[�1.189516, 0.922747]

Table 2
Number of data points and dimensionalities of the used datasets.

Task One-shot learning dataset Multi-shot learning dataset Units
#Data points #Dimensions #Data points #Dimensions

Blocking 218 8 1086 8 rad
Ph. education 213 5 592 5 rad
Lazy eight figures 239 5 717 5 rad

(a) Left arm joint specifications. (b) Left leg joint specifications.

Fig. 1. NAO robot joint specifications and corresponding ranges of movement, presented in degrees.
Source: Aldebaran robotics [38].

for signal alignment. Subsequently, we used a low-pass filter to
smooth out anomalies resulting from the alignment. In Table 2, we
present some details concerning the number of points and the di-
mensionality of each dataset.

In the case of the one-shot learning scenario, the aim was to
evaluate our approach under a sparser setting. For this purpose,
we used only the testing sequences of each task, after subjecting
them to undersampling, so as to obtain a total sequence length of
approximately 200 samples in each case. Testingwas conducted by
adding uniformly distributed noise U(0, 1) to the initial points of

the used sequences (also used for model training), and running the
algorithms so as to regenerate the (rest of the) learnt trajectories.
Taking into consideration the maximum joint ranges presented
in Table 1, it becomes obvious that the induced noise levels give
rise to a substantial deviation from the initial trajectory starting
points.

To measure the performance of the evaluated algorithms, we
utilize the mean square error (MSE) along the entire sequence
length as our error metric. We have excluded the time component
from MSE calculation, due to its trivial form; in fact, the time
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Fig. 2. NAO robot during the lazy eight figures experiment.

Fig. 3. Communicative gesture for the violation ‘‘Blocking’’.

variable is merely a line dichotomizing the 1st quadrant (✏ :

y = x). We also provide graphical illustrations of the generated
trajectories, by projecting them onto a 2-dimensional space, so as
to allow for a qualitative assessment of the obtained prediction
results.

Regarding model size selection, we have repeated our exper-
iments for various numbers of model states K to examine how
model performance is affected by this selection. We experimented
with values of K greater than 25, and low enough to ensure that
the number of estimated model parameters (i.e., the components
of theµi and⌃i, and the⇡i) does not exceed the number of training
data points. This way, we ward off the possibility of overfitting for
the GMRmodel, as suggested in [17]. Note that application of such
precautionary measures to avoid overfitting is not necessary for
the DPGMRmodel. As already discussed, the DPGMRmodel, being
a nonparametric Bayesianmodel, essentially imposes a prior on the
number of underlying model states. Hence, the number of states K
in the case of the DPGMRmodel corresponds to a variational trun-
cation level that expresses themaximumallowednumber ofmodel
states. From these states, only a small subset will eventually man-
ifest itself with any significance level ✏, after model training. This
subset of the DPGMR model states shall henceforth be referred to
as the model active components.

In an attempt to account for the effect of poor model
initialization, which may lead model training under both the EM
algorithm and the variational Bayesian approach to yield bad local
optima as model estimators, our experiments using the GMR and
DPGMRmodels were executed multiple times for each considered
number of (maximum) model states K , with different random
initializations each time. Means and standard deviations of the
employed performance measures over the executed multiple runs
are computed for each K value, and the statistical significance
of these results is assessed by means of the Student-t statistical
hypothesis test.

We briefly describe the conducted experiments below.

1. Lazy eight figures: In this experiment, we evaluate the
considered methods in terms of their applicability in teaching
a robot by demonstration how to draw a complex figure. The
considered figure comprises a lazy eight figures (Fig. 2). The
lazy eight figures (L8) generation task is a classical benchmark
for pattern generation methodologies [40,41]. From the first
impression, the task appears to be trivial, since an 8 figure can
be interpreted as the superposition of a sine on the horizontal
direction, and a cosine of half the sine’s frequency on the vertical

Fig. 4. Physical education exercise for the lower abdominal muscles.

direction. A closer inspection though will reveal that in reality
this seemingly innocent task entails surprisingly challenging
stability problems, which come to the fore especially when
using very limited model training datasets. The used dataset
consists of joint angle data from drawing 3 consecutive L8s.

2. Upper body motion: In the case of upper body motion,
our experiments involve a higher number of joints, thus
further increasing the dimensionality and, consequently, the
complexity of the addressed problem.We examine learning and
reproduction of a communicative gesture used by Basketball
officials, with potential applicability in the case of a robotic
referee. We have chosen a gesture that poses a challenge on the
learning by demonstration algorithm in terms of the implied
motion complexity, namely the sign concerning the violation
‘‘blocking’’1 (Fig. 3).

3. Lower bodymotion: Finally, we examine an experimental case
involving movement of the lower robot body, simulating a
lower abdominal muscle exercise (Fig. 4). This is one of the
scenarios under investigation of the ALIZ-E EU FP7 project
(http://www.aliz-e.org/), where robots are used as companions
to diabetic and obese children in pediatric ward settings over
extended time periods, and learn along with the children
various sensorimotor activities (e.g. dance, games, and physical
exercises) so that they can practice and improve together.

1 Also referred to as ‘‘traveling’’.
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(a) Lazy eight figures experiment. (b) Ph. E. exercise experiment. (c) Blocking gesture experiment.

Fig. 5. One-shot LbD scenario, MSE plots. GREEN: DPGMR, BLUE: GMR. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

(a) Lazy eight figures experiment. (b) Ph. E. exercise experiment. (c) Blocking gesture experiment.

Fig. 6. One-shot LbD scenario: number of DPGMR model active components plots. GREEN: #active components, BLUE: #initial states. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

Table 3
One-shot learning experiments: MSE results obtained by GPR, and best mean MSE results for the GMR and DPGMR methods.

Task One-shot learning MSE (time excluded)
GMR GPR DPGMR

Lazy eight figures 16 · 10�4 (±4.24 · 10�4) 0.062818 6.9 · 10�4(±2.4 · 10�4)
Ph. education 41 · 10�4 (±16 · 10�4) 0.436098 19 · 10�4(±5.21 · 10�4)
Blocking 23 · 10�4 (±5.94 · 10�4) 0.395844 15 · 10�4 (±4.08 · 10�4)

Table 4
Statistical significance results from the Student-t test. Obtained p-values below 10�2 indicate high statistical significance.

Task One-shot Multi-shot
Null hypothesis p-value Null hypothesis p-value

Lazy eight figures rejected 0.0028 rejected 2.03 · 10�9

Ph. education rejected 2.78 · 10�13 rejected 7.10 · 10�8

Blocking rejected 5.21 · 10�11 rejected 1.85 · 10�10

5.2. One-shot learning

As far as the one-shot learning experiment is concerned,
training and testing of the GMR and DPGMRmodels were repeated
100 times for each K value, using different random initializations
at each iteration. The means and standard deviations of the
so-obtained MSE values of the GMR and DPGMR methods are
presented in Fig. 5 for all experiments. In Table 3, we present
the best mean MSEs obtained by the GMR and DPGMR methods,
and the results for GPR. Regarding the performance of GPR, we
notice that the method proves to be unsuitable and fails to learn
the presented trajectories. As a result, the errors induced are much
higher compared to the other two evaluated methods.

Regarding comparison between GMR and DPGMR, we observe
that the proposed method contributes to a significantly improved
performance in all the conducted experiments. The error results
also are more consistent, as a much lower standard deviation of
the MSE values is achieved in almost all cases. Elaborating on that,
we can see that the best DPGMRmean error is less than half of that
obtained by GMR in the case of the L8s experiment ('43%), and the
Ph. E. exercise experiment ('46%). In the blocking communicative

gesture experiment, the improvement is approximately 34%. The
standard deviation of the observed error values is also consistently
lower in most cases. The L8s experiment was the only exception to
that rule; apparently, this phenomenon occurred as a consequence
of the fact that at lower numbers of initial states (K ) the truncation
level of the DPGMR was obviously much less than needed to
adequately model the observed trajectories, thus leading to poor
model fits. Additionally, utilizing the Student-t test we are able to
evaluate the statistical significance of our findings, regarding the
meanMSEs of GMR and DPGMR for different numbers of states. As
can be seen in Table 4, the null hypothesis that both sequences of
meanMSEs belong to distributions with the samemean is rejected
with considerable certainty.

Finally, in Fig. 6 we depict the obtained mean number
of DPGMR active components, as well as their corresponding
standard deviation. A very important conclusion that can be drawn
from these plots is that introduction of a Dirichlet process prior
resulted in significantly smaller models, thus avoiding both the
unnecessary complexity and the excessive computational burden
of GMR, without the need to resort to unreliable likelihood-
or entropy-based model selection criteria. Indeed, the DPGMR
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Table 5
Multi-shot learning experiments: MSE results obtained by GPR, and best mean MSE results for the GMR and DPGMR
methods.
Task Multi-shot learning MSE (time excluded)

GMR GPR DPGMR

Lazy eight figures 0.0072 (±12 · 10�4) 0.059959 0.0054 (±6 · 10�4)
Ph. education 0.0493 (±0.0475) 0.305892 0.0160 (±0.0072)
Blocking 0.0215 (±0.0023) 0.381941 0.0183 (±0.0029)

(a) Lazy eight figures experiment. (b) Ph. E. exercise experiment. (c) Blocking gesture experiment.

Fig. 7. Multi-shot LbD scenario, MSE plots. GREEN: DPGMR, BLUE: GMR. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

(a) Lazy eight figures. (b) Ph. E. exercise. (c) Blocking gesture.

Fig. 8. Multi-shot LbD scenario: number of DPGMRmodel active components plots. GREEN: #active components, BLUE: #initial states. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

model is able to achieve, on average, up to 30% model complexity
reduction compared to GMR. Note that the inferred number of
active components for the DPGMR model varies depending on the
random initialization of the training algorithm, hence the obtained
variance of the number of active components provided in these
graphs. We must underline though, that this variability is not an
undesirable property: In the case of the DPGMRmodel, the number
of active components is regarded as yet another model parameter,
and its value is determined in conjunction with the values of the
rest of the model parameters, so as to optimize the variational
lower bound L(q) in (25). Thus, different starting points for the
model training algorithm will necessarily yield different local
optimal for L(q), with the number of model active components
being one of the optimized parameters.

5.3. Multi-shot learning

For the multi-shot learning experiment, we have calculated the
meanMSE and its standard deviation resulting from 50 repetitions
of the training and testing procedures for the GMR and DPGMR
methods, as well as the performance of GPR. The obtained MSE
results are presented in Fig. 7 for the GMR and DPGMR methods,
and the best error results for the GMR and DPGMR methods along
with the performance of GPR are provided in Table 5. The results
of the Student-t test regarding the comparison between GMR and
DPGMR can be seen in Table 4, and, finally, the number of active
components of the DPGMR method are depicted in Fig. 8.

Commenting on the results, DPGMR achieves an error reduction
of approximately 27.7% in the L8s experiment, 66.3% in the Ph.
E. experiment, and 14.9% in the Blocking communicative gesture
experiment, compared to GMR. The standard deviation of the
DPGMR results is also lower, indicating that the postulated model
is more consistent. Even in the blocking experiment, where Table 5
shows a higher STD for DPGMR, it can be seen in Fig. 7(c) that
this behavior consists an isolated case, and the yielded STD is
in general lower than the one obtained by GMR. The Student-t
tests show an even higher statistical significance of the difference
between GMR and DPGMR, compared to the previous experiment.
Similarly, GPRdoes not performadequatelywell and fails to predict
the presented trajectories, regardless of the considerably higher
number of training data points available in this experiment.

As far as the model size is concerned, the highest reduction
is achieved in the Ph. E. exercise experiment, by as much as
35.9%. In the case of L8s and blocking communicative gesture,
DPGMR yields moderately reduced models, by as much as 6.8%
and 11.4%, respectively. It should be noted that, in this experiment,
the number of training data points vastly exceeds the number
of maximum model parameters, resulting from the selection of
the maximum K values. Hence, we would not expect the DPGMR
model to yield any significant model reduction. However, our
results have indicated that DPGMR obtains much smaller models
compared to GMR even under such an experimental setting. Thus,
we manage to empirically prove the remarkable advantages of
DPGMR in terms of the resulting computational efficiency, which
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Fig. 9. Multi-shot LbD scenarios, goodness of fit plots. BLACK: training data, GREEN: testing sequence, RED: GMR prediction, CYAN: DPGMR prediction, BLUE: model means
and STDs. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

is of crucial importance to the practical applicability of learning by
demonstration algorithms in modern robotic platforms.

Concluding, in Fig. 9 we provide a graphical representation of
the goodness of fit to the data of the GMR and DPGMR models.
We depict the 3 training sequences (in black), the testing sequence
(in green), the GMR-predicted data (in red), the DPGMR-predicted
data (in cyan) and the means and standard deviations of the
DPGMR model. As all trajectories are of higher dimensionality
than can be depicted, this graph was obtained by effectively
reducing the data dimensions to D = 2, by application of
the Karhunen–Loeve transform (KLT). In order to calculate the
corresponding covariance matrices of the DPGMR model in this
low-dimensional space,we obtained 1k samples from the posterior
distributions {N(·|µm,⌃m)}M

m=1, where M is the number of active
components, and subsequently found the covariance matrices of
the low-dimensional projections of those sampled points. We
observe that the DPGMR predictions fit the data much better than
the GMR-obtained ones.

5.4. Computational costs

Let us now investigate the computational costs of DPGMR, as
compared to its considered competitors, that is GMR and GPR. As
one may expect, based on Eqs. (29)–(45), DPGMR training for a
given value of the maximum number of model states K requires

exactly the same computational costs as GMR for the same value of
K . Additionally, as already discussed, GMR also demands training
multiple models (for different K values) to select from, which is
not the case for DPGMR, which conducts inference over the proper
number of model states. As such, DPGMR training eventually turns
out to be much more efficient than GMR training, as the need of
trainingmultiple models to select from gets obviated in the case of
DPGMR.

Regarding real-time testing, we have observed that DPGMR
offers a considerable improvement in the required computational
time costs over GMR, which, not surprisingly, is almost equal
to the model size reduction it offers compared to GMR. This
was expectable enough, given the expression of the DPGMR-
generated predictions (61), which shows that a GMR and a
DPGMRmodel with the same number of states impose exactly the
same computational costs to generate predictions, which increase
in a linear fashion with the effective size of the models (see,
e.g., Fig. 10).

Finally, we would like to mention that both GMR and DPGMR
are considerably more efficient compared to GPR. Indeed, contrary
to GMR and DPGMR, GPR computational costs for prediction
generation increasewith the number ofmodel training data points.
As such, it came to no surprise to us that GPR required 3 orders
of magnitude longer time to generate a prediction, in the case of
the multi-shot scenario, and at least double the time in the case
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Fig. 10. Time required to generate a prediction with the GMR (BLUE) and DPGMR
(GREEN) models, in the multi-shot Ph. E. exercise experiment. We observe that
DPGMR is much faster than GMR for the same value of the parameter K , as a
result of the induced model size reduction DPGMR offers. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this article.)

of the one-shot scenario. We would also like to mention that GMR
and DPGMR predictions required time of the magnitude of 10�3

seconds, typically lying in the interval [3.4,9] ms. On the contrary,
GPR execution times started from as low as 10 ms in the one-shot
experiments andwere as high as 19.5 s per prediction for themulti-
shotblocking communicative gestureexperiment.

6. Conclusions

In this paper, we presented a nonparametric Bayesian approach
toward trajectory-based robot learning by demonstration. The
proposed approach is based on the postulation of a Gaussian
mixture regression model comprising a countably infinite number
of states, and is facilitated by the imposition of a Dirichlet process
prior over the model states. The proposed approach allows for
the automatic determination of the proper number of GMR model
states, without the need of resorting to model order selection
criteria, application of which is rather tedious and notorious
for yielding noisy model order estimates with heavy overfitting
proneness.

Our novel approach was evaluated considering a number of
experimental scenarios, and its performance was compared to
state-of-the-art robot learning by demonstration methodologies
based on Gaussian mixture regression and Gaussian process
regression. As we showed, our method, exploiting the robustness
of Bayesian estimation, and the effectiveness of nonparametric
Bayesianmodels in automaticmodel size determination, allows for
a significant performance increase, while imposing computational
requirements for trajectory regeneration similar to the GPR/GMR
methods, since prediction under all these approaches eventually
reduces to a sum of linear regression models. The MATLAB
implementation of the DPGMR method shall be made available
through the websites of the authors.
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Appendix

From (28), and the expressions of the model posteriors (29)–
(45), we have

L(q) =

KX

c=1

hlog p(µc,Rc |�c,mc,!, c)

� log q(µc,Rc)iq(µc ,Rc )

+ hlog p(↵|�1, �2) � log q(↵)iq(↵)

+

K�1X

c=1

hlog p(vc |↵) � log q(vc)iq(vc ),q(↵)

+

KX

c=1

NX
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q(xn = c)
�
hlog p(xn = c|⇡(v))iq(v)

� log q(xn = c) + hlog p(yn|⇥c)iq(µc ,Rc )
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where
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hlog p(yn|⇥c)iq(µc ,Rc )

= �
d

2
log 2⇡ +

1
2
hlog |Rc |iq(µc ,Rc )

�
1
2
[h(yn � µc)

TRc(yn � µc)iq(µc ,Rc )] (67)

h(yn � µc)
TRc(yn � µc)iq(µc ,Rc )

=
d

�̃c
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hlog |Rc |iq(µc ,Rc ) = � log
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(69)

hlog p(vc |↵) � log q(vc)iq(vc ),q(↵)

= hlog� (1 + ↵)iq(↵) � hlog� (↵)iq(↵) � log� (1)
+ (h↵iq(↵) � ⌘c,2)hlog(1 � vc)iq(vc ) � log� (⌘c,1 + ⌘c,2)

+ log� (⌘c,2) + log� (⌘c,1) � (⌘c,1 � 1)hlog(vc)iq(vc ) (70)

hlog vci =  (⌘c,1) �  (⌘c,1 + ⌘c,2) (71)

hlog(1 � vc)i =  (⌘c,2) �  (⌘c,1 + ⌘c,2) (72)
hlog p(↵|�1, �2) � log q(↵)iq(↵)

= � log� (�1) + log� (�̂1) + �1 log �2 � �̂1 log �̂2
+ (�1 � �̂1)hlog↵iq(↵) � (�2 � �̂2) h↵iq(↵) (73)
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h↵i =
�̂1

�̂2
(74)

hlog↵iq(↵) =  (�̂1) � log(�̂2) (75)
hlog p(xn = c|⇡(v))iq(v)

= hlog⇡c(v)i

=

c�1X

c0=1

hlog(1 � vc0)i + hlog vci (76)

where d is the dimensionality of the input yn, while � (1) = 1.
Finally, regarding the expressions of the h⇡c(v)i in (47), we have

h⇡c(v)i = hvci

c�1Y

j=1

(1 � hvji) (77)

where

hvci =
⌘c,1

⌘c,1 + ⌘c,2
. (78)

In the above,  (.) denotes the Digamma function, and � (·) the
Gamma function.
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